Omega Speaker SystemsメーカーOS550 Seriesの使用説明書/サービス説明書
ページ先へ移動 of 77
OS5 50/OS550-BB Series Industrial Inf r ar e d Ther m om e t er/T ransmitter MADE IN omega.com e-mail: info@omega.com For latest product manuals: omegamanual.
Servicing Nor th America: U.S.A.: One Omega Drive, Box 4047 ISO 9001 Certified Stamford, CT 06907-0047 Tel: (203) 359-1660 FAX: (203) 359-7700 e-mail: info@omega.com Canada: 976 Bergar Laval (Quebec) H7L 5A1, Canada Tel: (514) 856-6928 FAX: (514) 856-6886 e-mail: info@omega.
NOTE i Unpacking Instructions Remove the Packing List and verify that you have received all equipment, including the following (quantities in parentheses): OS550 or OS550-BB Series Infrared Thermomete.
ii OS550 Series Industrial Infrared Thermometer This page is intentionally blank.
TABLE OF CONTENTS OS550/OS550-BB Series Industrial Infrared Thermometer iii Page Unpacking Instructions ...................................................................... i Chapter 1 General Description ............................................
iv TABLE OF CONTENTS OS550/OS550-BB Series Industrial Infrared Thermometer Page Chapter 4 Laser Sight Accessory ................................................... 4-1 4.1 Warnings and Cautions .........................................................
1-1 General Description 1 1.1 Introduction The OS550 Series Industrial Infrared (IR) Thermometers provide non-contact temperature measurement up to 2500°F (1371°C).
General Description 1 1-2 1.2 Thermometer Features The thermometer is easy to use: • Temperature readings are switchable from °F to °C via the keypad. • Parameters, such as target material emissivity and alarm setpoints, can be set and remain in memory until reset.
1-3 General Description 1 1.2.1 Display Details Figure 1-1. Display and Keypad View Table 1-2. Display Details Key Description ➀ Display Mode displays one of the following: E (Emissivity) HAL (High .
1-4 1.2.2 Parts of the Thermometer/Transmitter Figure 1-2. OS550/OS550-BB Series Industrial Infrared Thermometer Front View The display is shown in more detail in Figure 1-1 and described in Table 1-2. Note: There are no user-serviceable parts in the thermometer.
2-1 2 2.1 Installation 2.1.1 Sensor Head Installation The OS550’s sensor head is made of black anodized aluminum. Both ends of the sensor head come with a 1 1 ⁄ 2 - 20 standard threaded mounting connection.
Installing the Infrared Thermometer 2 2-2 2.2 Sensor Head Dimensions Fig. 2-1. Sensor Head Dimensions 29.2 (1.15) 29.2 (1.15) 41.1 (1.62) DIA. 38.1 (1.
2-3 2.3 OS550 Display Electronics Dimensions Fig. 2-2. Main Display NEMA Housing with Mounting Brackets Dimensions Installing the Infrared Thermometer 2 131.
2-4 Installing the Infrared Thermometer 2 2.4 OS550-BB Series Display Mounting Dimensions Fig. 2-3. OEM Style Main Display with Mounting Plate 26.4 (1.04) 31.0 (1.22) 57.4 (2.26) Ø 5.16 (0.203) THRU TYP . (4 PLA CES) WILL FIT UP TO A #10 SCREW OR BOL T 118.
2-5 Installing the Infrared Thermometer 2 2.5 Mounting Bracket Dimensions (OS550-MB) 2.6 Mounting Nut Dimensions (OS550-MN) 50.8 (2.00) 57.2 (2.25) 38.61 Ø (1.520) 88.9 (3.50) 6.4 (.25) REF 88.9 (3.50) 12.7 (.50) 25.4 (1.00) 28.58 (1.125) 22.23 (.875) 25.
Installing the Infrared Thermometer 2 2-6 2.7 Mounting Flange Dimensions (OS550-MF) 2.8 Air Purge Collar Dimensions (OS550-AP) 6.35 (.250) 38 (1.5) - 20 THREAD 6.35 (.250) THR U TYP . (3 PLACES) 3 HOLES ON Ø 71.1 (2.80) BOL T CIRCLE TYP . 3 PLACES 120 Ø 89 (3.
3-1 Using the Infrared Thermometer 3 3.1 Using the Infrared Thermometer 3.1.1 Water Cool Jacket Accessory When using the OS550 sensor head in an ambient temperature environment above 50°C (122°F), the OS550-WC Water Cooling Jacket option must be used to maintain the accuracy and response time of the unit.
Using the Infrared Thermometer/Transmitter 3 3-2 3.2 How To Power the Thermometer 3.2.1 OS550 Series Cable Connection The OS550 Series thermometer comes with a built-in 4.5 m (15 ' ) power/output cable. Power and output connections are made to the cable via stripped wire ends located at one end of the cable.
3-3 Using the Infrared Thermometer/Transmitter 3 3.3 Operating The Thermometer 1. After installing the thermometer (see section 2.1) and connecting power (see section 3.2), your unit will be ready for use. Your unit has been shipped to you with the SLEEP/ON switch in the “ SLEEP ” position.
Using the Infrared Thermometer/Transmitter 3 3-4 Figure 3-3. OS550 Series (-1 FOV) Figure 3-4. OS550 Series (-2 FOV) 7.0 .35" @ 24" 1.6 9mm @ 610 mm .8 21 42 181 .9 22 4.0 101 0 3 16 10 2 5 SPO T DIA.* (MM) *SPO T DIAMETER MEASURED A T 90% ENERGY 5.
3-5 Using the Infrared Thermometer/Transmitter 3 Figure 3-5. OS550 Series (-3 FOV) Figure 3-6. OS550 Series (-4 FOV) 4.8" 1.0" @ 0" to 20" 2.5cm @ 51cm 1.2" 1.0" 2.5 6.0 4.0 8.0 10.0 12.2 160 120 80 40 1.0" 1.8" 2.
Using the Infrared Thermometer/Transmitter 3 3-6 2.9 0.9" @ 0 1.9 22mm @ 0 1.2 1.0 31 26 48 75 0.9 0 3 16 10 *SPO T DIAMETER MEASURED A T 90% ENERGY D:S = 60:1 5 5.0 0 1.0 3.0 1.5 SPO T DIA.* (MM) SPO T DIA.* (IN) DIST ANCE: SENSOR TO OBJECT (FT) DIST ANCE: SENSOR TO OBJECT (M) .
3-7 3 Using the Infrared Thermometer/Transmitter 3 3.4 Measurement Techniques You can use the IR Thermometer to collect temperature data in any one of five different ways: • Spot Measurement — Measures the temperature of discrete objects such as motor bearings, engine exhaust manifolds, etc.
Using the Infrared Thermometer/Transmitter 3 3-8 • Moving Surface Scan - Measures the Temperature of Points on a Moving Surface: 1. Mount the sensor head and aim at your target. 2. If necessary, adjust the emissivity. The thermometer is now set up for measuring the temperature of a moving surface.
3-9 Using the Infrared Thermometer 3 3.4.1 Real Time Mode (Active Operation) Definition: Real Time Mode is the active operational mode of the thermometer.
3-10 Using the Infrared Thermometer/Transmitter 3 Table 3-1. Functional Flow Chart when the Unit is On (Real Time Mode) Display Mode: Press to... Go to Go to Go to Go to Go to Go to or Go to Go to Go to or Go to Press to.
3-11 3 Using the Infrared Thermometer/Transmitter * W hile in these 4 modes: Use key to change temperat u re from °F to °C or v ice v ersa. Use key to t u rn on the display b acklighting.
Using the Infrared Thermometer/Transmitter 3-12 3 3.5.1 Adjusting Emissivity Refer to Appendices B and C for information on emissivity before making your adjustment. 1. When the thermometer is powered up, the default emissivity setting will be set to 0.
3-13 Using the Infrared Thermometer/Transmitter 3 3.5.2 Calculating Temperature Values The thermometer calculates the MAX, MIN, dIF, and AVG temperatures based on the current temperature. To clear the “ AVG --- ” display, turn off the thermometer.
Using the Infrared Thermometer/Transmitter 3-14 3 3.5.5 Using the Alarm Functions The thermometer provides audible and visible alarm indications. • To set the high alarm value : 1. Press the key until the High Alarm Display Mode (HAL) appears. 2. Press the key to increment the high alarm value.
3-15 Using the Infrared Thermometer/Transmitter 3 • To set the low alarm value (OS552, OS553, OS554) : 1. Press and hold the key until the Low Alarm Display Mode (LAL) appears. 2. Press the key to increment the low alarm value. Press the key to decrement the low alarm value.
Using the Infrared Thermometer/Transmitter 3-16 3 3.5.6 Using Ambient Target Temperature Compensation (OS552, OS553, OS554) Use the Ambient Target Temperature Compensation (AMB) Display Mode when high accuracy readings under both of these conditions are required: • The target has a low emissivity.
3-17 Using the Infrared Thermometer/Transmitter 3 8. Press and hold the key until the Emissivity Display Mode (E) appears. 9. Change the emissivity to the proper value for the target being measured (refer to Section 3.5.1). 10. Aim at the target. The target temperature and emissivity are displayed on the LCD.
Using the Infrared Thermometer/Transmitter 3-18 3 Figure 3-10. Serial Printer Hookup 3. With power applied to the unit, press and hold the key until the Print Data Display Mode (PRN) appears. 4. Press the key to increment the printing interval. Press the key to decrement the printing interval.
3-19 Using the Infrared Thermometer/Transmitter 3 6. After all data is taken, press and hold the key until the Emissivity Display Mode (E) appears. 3.5.8 Sending Temperature Data to a Personal Computer (OS552, OS553, OS554) The thermometer can transmit temperature data to a Personal Computer via the RS-232 phone jack and the RS-232 cable.
Using the Infrared Thermometer/Transmitter 3 3-20 How to Install IR_TEMPSOFT Please follow this installation procedure to install IR_TEMPSOFT: 1. Place the supplied CD disk into your CD-ROM drive. Make certain that you are not running any other applications at this time.
3-21 Using the Infrared Thermometer/Transmitter 3 program please contact technical support at Omega Engineering Inc. Connecting the IR-System to the PC Make certain that your Infrared Thermometer is powered down before you attempt to make any connections to the personal computer.
Using the Infrared Thermometer/Transmitter 3 3-22 waiting for the thermometer to transmit data through your RS-232 port. 4. Begin transmitting data from the thermometer by pressing and holding the key on the thermometer until the Print Data Display Mode (PRN) appears.
3-23 Using the Infrared Thermometer/Transmitter 3 3.5.9 Storing the Temperature Data on Command (OS553, OS554) The thermometer can store up to 100 temperature data points on command. Each set of temperature data is broken down into the temperature value, emissivity, and high alarm setpoint for that temperature.
Using the Infrared Thermometer/Transmitter 3 3-24 3.5.10 Erasing the Temperature Data from Memory The user can erase all 100 temperature data points in memory at any time by using the following procedure: 1. With power applied to the unit, place the SLEEP/ON switch to the ON position.
3-25 Using the Infrared Thermometer/Transmitter 3 3.6 Recall Mode (Passive Operation) Definition: Recall Mode is the passive operational mode of the thermometer . In this mode, you may r eview the most recently stored temperatur e data and parameters.
Using the Infrared Thermometer/Transmitter 3 3-26 Table 3-2. Functional Flow Chart (Recall Mode) DISPLA Y MODE: Press to... Go to Go to Go to Go to Go to Go to or Go to Go to or Go to Go to Press to... Print stored data Displa y stored temperature Press or to.
3-27 Using the Infrared Thermometer/Transmitter 3 3.6.1 Reviewing the Last Parameters The thermometer stores the last temperature measured in the real time mode (refer to Table 3-1). This temperature can be recalled by pressing the key. 1. With power applied to the unit, place the SLEEP/ON switch to the SLEEP position.
Using the Infrared Thermometer/Transmitter 3 3-28 3 3. To download stored temperature data points from the thermometer, first make certain that it is not in printing mode. Make sure that the IR_TEMPSOFT is installed properly as explained in previous section.
3-29 Using the Infrared Thermometer/Transmitter 3 3.6.3 Reviewing Previously Stored Temperature Data (OS553, OS554) You can review all 100 stored temperature values on the thermometer display using the following procedure: 1. With power applied to the unit, place the SLEEP/ON switch to the SLEEP position 2.
Using the Infrared Thermometer/Transmitter 3 3-30 Notes.
4-1 4.1 W arnings and Cautions When using the laser sight accessory OS550-LS, you may receive harmful laser radiation exposure if you do not adhere to the warnings listed below: • USE OF CONTROLS OR ADJUSTMENTS OR PERFORMANCE OF PROCEDURES OTHER THAN THOSE SPECIFIED HERE MAY RESULT IN HAZARDOUS RADIATION EXPOSURE.
Laser Sight Accessory 4 4-2 4.2 Description A laser sighting accessory is available to aid in the sensor head installation process. When installing a line of sight Infrared transducer with a small spot size and long target distance, it is sometimes difficult to locate the center of the focused spot and the material to be measured.
4-3 Laser Sight Accessory 4 4.3 Operating the Laser Sight 4.3.1 Installing the Laser Sight onto the Thermometer The laser sight accessory (OS550-LS) screws onto the front of the sensor head. Do not over tighten the laser sight accessory onto the sensor head.
Laser Sight Accessory 4 4-4 Notes.
5.1 Cleaning the Sensor Head Lens Although all lenses are quite durable, take care to prevent scratching when cleaning them. To clean the lens: 1. Blow off loose particles, using clean air. 2. Gently brush off remaining particles, using a camel hair brush.
Maintenance 5 5-2 Notes.
THERMOMETER Problem Solution The thermometer does a. Check for proper power not turn on (No Display) connections, see Section 3.2 b. Contact our Customer Service Department, unit requires service. a. Make sure you have entered the correct emissivity setting.
Troubleshooting Guide 6 6-2 Problem Solution The display is either a. Clean the thermometer lens. erratic or stays at Refer to Section 5.1. one reading b. Activate the Diagnostic Program in the thermometer as follows: c. Press the key. d. Hold down the key and press the key until “ VER X.
6-3 Troubleshooting Guide 6 The temperature reading is erratic. The sensor head has just been moved from one extreme temperature to room temperature [0°C or 50°C (32°F or 122°F)] or vice versa.
Troubleshooting Guide 6 6-4 Notes.
(Specifications are for all models except where noted) THERMOMETER Measuring OS551: –18°C to 400°C (0°F to 750°F) Temperature OS552: –18°C to 538°C (0°F to 1000°F) Range: OS553: –18°C t.
Specifications 7 7-2 Emissivity: 0.10 to 1.00 in 0.01 increments, set via keypad Calculated Temperature Maximum (MAX), Minimum (MIN), Values: Average (AVG), Differential (dIF) Ambient Target OS552: se.
7-3 Specifications 7 1 mV/degree C or F Analog Output: Accuracy: ± 2 m V referenced to the temperature display 0-5 Vdc Analog Output: Accuracy: ± 0.25% of full scale (Referenced to display reading) Scaling: Fixed (scaled to match full temperature range of model selected) Minimum Load: 600 ohms 4-20 mA Analog Output: Accuracy: ± 0.
7 7-4 Specifications 7 LASER SIGHT ACCESSORY (OS550-LS) Wavelength (Color): 630-670 nanometers (red) Operating Distance: Laser Dot 152 mm to 12 m (6 " to 40') Max. Output Optical Power: <1mW at 75°F ambient temperature, Class II, Laser Product European Classification: Class 2, EN60825-1 Maximum Operating Current: 25mA at 5.
Key(s) Key(s) Functions • Selects one of the following Display Modes: E , MAX, MIN, dIF, AVG, HAL, LAL, AMB, PRN, or MEM. • Enables/disables High and Low Alarms. • Enables/disables Target Ambient Temperature Compensation. • Enables/disables sending data to the personal computer or serial printer.
1 8-2 Notes Glossary of Key Strokes 8.
Thermal Radiation Heat is transferred from all objects via radiation in the form of electromagnetic waves or by conduction or convection. All objects having a temperature greater than absolute zero (-273°C, -459°F, 0 K) radiate energy. The thermal energy radiated by an object increases as the object gets hotter.
Appendix: How Infrared Thermometry Works A A-2 Blackbody When thermal radiation falls on an object, part of the energy is transmitted through the object, part is reflected and part is absorbed. A blackbody is defined as an ideal object that absorbs all the radiation incident upon it.
A-3 Appendix: How Infrared Thermometry Works A Wien’s Displacement Law describes the exact mathematical relationship between the temperature of a blackbody and the wavelength of the maximum intensity radiation.
Appendix: How Infrared Thermometry Works A A-4 Optics Field of View Accurate measurement of temperature via infrared means depends strongly on the size of the object and the distance between the thermometer and the object.
B-1 Table B-1 provides guidelines for estimating the emissivity of various common materials. Actual emissivity, especially of metals, can vary greatly depending upon surface finish, oxidation, or the presence of contaminants. Also, emissivity or infrared radiation for some materials varies with wavelength and temperature.
Appendix: Emissivity Values B B-2 NONMET ALS Material Emissivity ( ε ) Asbestos Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.96 Asphalt, tar, pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In Appendix A, we showed how emissivity is an important parameter in calculating the temperature of an object via infrared means. In this section we discuss how to determine a specific emissivity value. If you know the material of the object, use Table B-1 in Appendix B to look up its approximate emissivity.
Appendix: Determining an Unknown Emissivity C C-2 Method 3 1. Use this method to measure objects at temperatures below 500°F (260°C). 2. Place a large piece of masking tape on the object (or at least a sample of the object material). Allow time for the masking tape to reach the object temperature.
C-3 Appendix: Determining an Unknown Emissivity C Method 4 1. Paint a sample of the object material with flat black lacquer paint. 2. Set the emissivity to 0.97 and measure and record the temperature of the painted portion of the sample material - Area “ A ” in Figure C-1.
D-1 ADDENDUM TO OS550/OS550-BB MANUAL IMPORTANT CONSIDERATIONS BEFORE INSTALLATION Follow all safety precautions and operating instructions outlined in this addendum and your OS550 Series manual. - - - - - - - - - - - - - - - - - - - - - - - - - SYMBOL KEY - - - - - - - - - - - - - - - - - - - - - - - - CAUTION: Refer to accompanying documents.
D-2 ADDENDUM TO OS550/OS550-BB MANUAL OS550 SENSOR HEAD GND VOL TAGE O/P: 0-5 Vdc CURRENT O/P: 4-20 mA 1 +PWR (RED) 2 -PWR (BLACK) 3 +O/P (WHITE) 4 -O/P (GREEN) 5 SHIELD (BARE) [DRAIN WIRE] DC POWER S.
I-1 Index I A Air Purge Collar ....................... 2-6 Alarms ........................... 3-14, 3-15 Ambient Target Temperature Compensation ...................... 3-16 B Backlighting Icon ...................... 1-3 Blackbody .....................
LOCK (Lock) ........................ 1-3 ▲ & ❍ - ● ................................ 1-3 Key Strokes ............................... 8-1 L Label Layout: Danger & Certification ............ .....................Inside Back Cover Laser Sight Installing onto Thermometer .
WARRANTY / DISCLAIMER OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of 25 months from date of purchase on the base unit and 13 months from date of purchase on Laser Sight Module .
M2830/1104 Where Do I Find Ever ything I Need for Pr ocess Measurement and Control? OM EGA…Of Course! Shop online at omega.com TEMPERA TURE 䡺 ⻬ Thermocouple, RTD & Thermistor Probes, Connect.
デバイスOmega Speaker Systems OS550 Seriesの購入後に(又は購入する前であっても)重要なポイントは、説明書をよく読むことです。その単純な理由はいくつかあります:
Omega Speaker Systems OS550 Seriesをまだ購入していないなら、この製品の基本情報を理解する良い機会です。まずは上にある説明書の最初のページをご覧ください。そこにはOmega Speaker Systems OS550 Seriesの技術情報の概要が記載されているはずです。デバイスがあなたのニーズを満たすかどうかは、ここで確認しましょう。Omega Speaker Systems OS550 Seriesの取扱説明書の次のページをよく読むことにより、製品の全機能やその取り扱いに関する情報を知ることができます。Omega Speaker Systems OS550 Seriesで得られた情報は、きっとあなたの購入の決断を手助けしてくれることでしょう。
Omega Speaker Systems OS550 Seriesを既にお持ちだが、まだ読んでいない場合は、上記の理由によりそれを行うべきです。そうすることにより機能を適切に使用しているか、又はOmega Speaker Systems OS550 Seriesの不適切な取り扱いによりその寿命を短くする危険を犯していないかどうかを知ることができます。
ですが、ユーザガイドが果たす重要な役割の一つは、Omega Speaker Systems OS550 Seriesに関する問題の解決を支援することです。そこにはほとんどの場合、トラブルシューティング、すなわちOmega Speaker Systems OS550 Seriesデバイスで最もよく起こりうる故障・不良とそれらの対処法についてのアドバイスを見つけることができるはずです。たとえ問題を解決できなかった場合でも、説明書にはカスタマー・サービスセンター又は最寄りのサービスセンターへの問い合わせ先等、次の対処法についての指示があるはずです。