HPメーカー9Gの使用説明書/サービス説明書
ページ先へ移動 of 87
E-1 hp 9g Graphing C alcula tor Contents Chapter 1 : Ge neral Operatio ns ................................... 4 P ow er Suppl y .................................................................... 4 Turning on or off ..................................
E-2 Display F ormat ................................................................ 13 P arentheses Calculations .................................................. 14 P erc entage Calculations ................................................... 14 Repeat Calculations .
E-3 Probability Distr ibution (1- V ar Data) ................................. 23 Regr ession Calculation ..................................................... 2 4 Chapter 7 : BaseN Calculati ons .................................. 24 Negative E xpressions.
E-4 Chapter 1 : General Ope rations Power Supply Turni ng on or of f To tu rn the ca lculato r on, p ress [ ON ]. To turn the cal culator off, press [ 2n d ] [ OFF ]. Battery r eplac ement The calculator is powered by two alka line button batteries (GP76A or LR44).
E-5 darke r . Display Features Graph display Calculation dis play Entry line Display s an entry of up to 7 6 digits. Entri es with m ore than 11 digits w ill scroll to th e left. When you input the 6 9 th digit of a single entry , t he cur sor changes fr om to to let you know that y ou are appr oaching th e entry limit.
E-6 SCIENG SCIentif ic or ENGineerin g display form at FIX Number of decimal places display ed is fi xed HYP Hyperbolic trig function will b e calcula ted The displa yed val ue is an intermediate r esult There ar e digits to the left or r ight of the display There ar e earli er or later r esults that can be display ed.
E-7 Label color Mea ni ng White Just pr ess the key Y ellow Press [ 2nd ] an d then the key Green In Base -N mode, just press the key Blue Press [ ALPHA ] an d then the ke y Using the 2n d and ALPHA keys To execute a function with a yellow label, press [ 2nd ] and then the corresponding key.
E-8 To delete a character, press [ ] or [ ] to move the cursor to that character and then press [ DEL ]. (Whe n the cursor is on a character, the character is underli ned.) To undo the deleti on, immediately press [ 2nd ] [ ]. To clear all characters, press [ CL / ESC ].
E-9 memories can b e adde d in thi s way , g iving you a maximu m of 59 memories (2 6 + 33). Note: To restore the de fault memor y configuration—26 memories—sp ecify Defm 0. Expa nded memor ies ar e named A [ 1 ] , A [ 2 ] etc and can b e used in the same wa y as sta ndard memory variab les.
E-10 5. Abbreviated multipli cation format involving variables, π , RA ND, RANDI. 6. ( – ) 7. Abbreviated multiplication format in front of Type B functions, , Alog2, etc. 8. nPr, nCr 9. × , 10. +, – 11. Relational operators: = = , < , >, ≠ , ≤ , ≥ 12.
E-11 tan –1 x x < 1 × 10 100 sinh x, cosh x x ≦ 230 .2585 092 tanh x x < 1 × 10 100 sinh –1 x x < 5 × 10 99 cosh –1 x 1 ≦ x < 5 × 10 99 tanh –1 x x < 1 log x, ln x 1 × 10 –99 ≦ x < 1 × 10 100 10 x –1 × 10 100 < x < 100 e x –1 × 10 100 < x ≦ 230.
E-12 nPr , nCr 0 ≦ r ≦ n, n < 10 100 , n, r a re integers. STA T | x | < 1 × 10 100 ,| y | < 1 × 10 100 1 -V AR : n ≦ 30, 2 -V AR : n ≦ 30 FREQ.
E-13 2 . An improp er argu ment was used in a comm and or func tion. 3. A n END sta tement is missing from a program. LENG TH Er An entry exceeds 8 4 digits after impli ed multiplicati on with auto-corre ction .
E-14 • A dec imal forma t is s elected by pr e ssing [ 2nd ] [ FIX ] and selecting a value from the menu ( F0123456789 ). To set the displayed decimal places to n , enter a value for n directly , or pr ess the c urso r keys until the value is underlined and then press [ ].
E-15 When you enter a numeric value or numeric expression and press [ ], the result is stored in the Answer function, which you can then quickly recall. See Example 19. Note: The result is retained e ven if the po wer is turned off . It is also retained if a subsequent calc ulatio n results in an er ror .
E-16 To change the angular unit setting to another setting, press [ DRG ] r epeate dly until t he angula r unit y ou wa nt is indi cated on t he display. The con versi on procedur e follo ws (also see Ex ample 2 5 ): 1. Change the angle units to the units you want to convert to.
E-17 Press [ MAT H ] rep eated ly to is di splay a l ist of mathe matical func tions and their associated arguments. See Exam ple 31. The functions avai lable are: ! Calc ulate the factori al of a specif ied positi ve in teger n , wher e n ≦ 69. RAND Generate a r andom number betw een 0 and 1.
E-18 1. Enter the number you want to convert. 2. Press [ 2nd ] [ CONV ] to display the units menu. There are 7 menus, cover ing dista nce, ar ea, te mperat ure, ca pacit y, weight , energ y, and pressure. 3. Press [ ] or [ ] to scroll through the list of units until the appropriate units menu is shown, then press [ ] .
E-19 1. Position your cursor where you want the constant inserted. 2. Press [ 2nd ] [ CONST ] to displ ay the physics constants menu. 3. Scr oll throu gh the menu u ntil the const ant you want i s under lined.
E-20 After setting the range, press [ Graph ] and enter the expression to be graphed. See Example 37. Graph ↔ Text Display and Clearing a Graph Press [ G T ] to switch between graph display and text display and vice versa. T o clear th e graph, please press [ 2nd ] [ CLS ] .
E-21 This function l ets you move a pointer around a graph by pressing [ ] and [ ]. The x- and y-coordinates of the current pointer location are displayed on the screen. This function is useful for determining the intersection of superimposed graphs (by pressi ng [ 2nd ] [ X Y ]).
E-22 7. Press [ ] [ ] [ ] or [ ] to scroll through the statistical variables until you reach the variable you are interested in (see table below). Variable Meaning n Numbe r of x valu es or x –y pairs e ntered. or Mean of the x values or y val ues. Xmax or Yma x Maximum of the x value s or y valu es.
E-23 , Cpx or Cp y Potential capability precision of the x values or y values, , Cpkx or Cpky Mi nimum (CPU, CPL) of t he x valu es or y valu es, where CPU is th e upper spec. limit of capab ility prec isio n and CPL is low er spec. limit of capability p rec ision .
E-24 R(t) The c umulative f racti on of the standard n ormal distributi on that lies betw een t and 0. R(t) = 1 – t . Q(t) The cumulati ve f racti on of the standard nor mal distributi on that is greater than t .
E-25 You c an enter numbers in ba se 2, ba se 8, b ase 10 or b ase 16 . To set the number base, p ress [ 2nd ] [ dhbo ] , sele ct an optio n from t he menu and press [ ]. An indicator shows the base you selected: d , h , b , or o . (T he default setting is d : decimal base).
E-26 Before Using the Progra m Area Number of Remaining St eps: The program capacity is 400 steps. The number of steps indicates the amou nt of storage space available for progr ams, and i t will decr ease a s progr ams are input. T he nu mber of remaining steps will al so de cre ase wh en ste ps are co nve rte d to m emo ries .
E-27 INPUT memory variable ⇒ Makes the program pause for data input. memory variable = _ appears on the display. Enter a value and press [ ]. The value is assigned to the specified variable, and the program resumes execution. To inpu t more t han o ne memo ry var iable, se par ate the m with a semicolon (;).
E-28 ⇒ Each p rogra m needs an END co mmand t o mar k the e nd of t he progr am. This i s displa yed au tomatic ally w hen you cr eate a ne w progr am.
E-29 ⇒ The SWAP command swaps the co ntents in t wo memory vari ables. Relational Operator s The relational operators that can be used in FO R loops and c onditional branching are: = = (equal to), < (l ess than), > (gr eater than), ≠ (not equ al to), ≤ (less than or equal to), ≥ (greater than or eq ual to) .
E-30 Debugging a Pr ogram A prog ram might gener ate an error messag e or u nexpec ted re sults w hen it is executed. This indicates that there is an error in the program that needs to be corrected. • Error messages appear for approxim ately 5 seconds, an d then the cursor blinks at th e location of the error.
E-31 3. To erase a ll the p rograms , select ALL . 4. A message appears asking you to confirm that you want to delete the progr am(s). Press [ ] to move the cursor to Y and then press [ ]. 5. To exit DEL mod e, sele ct EXIT from the p rogra m menu. Program Examples See Examples 54 to 63.
E-32 [ ] [ ] [ ] Example 3 Enter 14 0 × 2 . 3 and then cor rect it to 14 10 × 2. 3 14 [ ] 0 [ × ] 2 .3 [ ] (after 5 Seco nds ) [ ] 1 [ ] Example 4 [ ( 3 × 5 ) + ( 56 7 ) – ( 7 4 – 8 ×.
E-33 56 [ ] 7 [ M+ ] [ MRC ] [ ] 7 4 [ – ] 8 [ × ] 7 [ 2nd ] [ M– ] [ MRC ] [ ] [ MRC ] [ MR C ] [ CL / ESC ] Example 5 (1) Assign 30 into variable A [ 2nd ] [ CL -V AR ] 30 [ SA VE ] [ A ] [.
E-34 [ S A VE ] [ B ] [ ] 1 (3 ) Add 3 to variable B [ ALPHA ] [ B ] [ + ] 3 [ ] 2 (4) Cle ar all variables [ 2nd ] [ CL -V AR ] [ 2nd ] [ RCL ] Example 6 (1) Set P ROG 1 = cos (3A) + sin (5B), wh.
E-35 [ PR OG ] 1 [ ] [ ] [ CL / ESC ] 20 [ ] [ CL / ESC ] 18 [ ] Example 7 (1) Exp and the number of memories from 26 to 28 [ MA TH ] [ MA TH ] [ MA TH ] [ MA TH ] [ ] [ ] 2 [ ] 4 (2) As sign 66 t.
E-36 5 (3 ) Recall variable A [ 2 7 ] [ ALPHA ] [ A ] [ ALP HA ] [ [ ] ] 27 [ ] 6 (4) Retu rn memory variables to the default configuration [ MA TH ] [ MA TH ] [ MA TH ] [ MA TH ] [ ] [ ] 0 [ ] Example 8 7 + 10 × 8 2 = 4 7 7 [ + ] 10 [ × ] 8 [ ] 2 [ ] Example 9 – 3.
E-37 12 3 6 9 [ × ] 7 53 2 [ × ] 7 4 103 [ ] Example 11 6 7 = 0.85 7142 85 7 6 [ ] 7 [ ] [ 2nd ] [ FIX ] [ ] [ ] [ ] [ ] [ 2nd ] [ FIX ] 4 [ 2nd ] [ FIX ] [ • ] Example 12 1 6000 = 0.
E-38 [ 2nd ] [ S CI / ENG ] [ ] [ ] [ 2nd ] [ S CI / ENG ] [ ] [ ] [ 2nd ] [ S CI / ENG ] [ ] [ ] Example 13 0.0015 = 1. 5 × 10 – 3 1.5 [ EXP ] [ (–) ] 3 [ ] Example 14 20 G byte + 0.
E-39 20 [ 2nd ] [ ENG S YM ] [ ] [ ] [ ] [ + ] 0.15 [ 2nd ] [ ENG S YM ] [ ] [ ] Example 15 ( 5 – 2 × 1.5 ) × 3 = 6 [ ( ) ] 5 [ – ] 2 [ × ] 1.
E-40 88 [ ] 5 5 [ 2nd ] [ % ] [ ] Example 18 3 × 3 × 3 × 3 = 81 3 [ × ] 3 [ ] [ × ] 3 [ ] [ ] 8 Calcu lat e 6 after calc ulating 3 × 4 = 12 3 [ × ] 4 [ ] [ ] 6 [ ] Example 19 12 3 + 4 5.
E-41 7 8 9 [ – ] [ 2nd ] [ ANS ] [ ] Example 20 ln7 + log100 = 3 .9 45 910149 [ ln ] 7 [ ] [ + ] [ log ] 100 [ ] 9 10 2 = 100 [ 2nd ] [ 10 x ] 2 [ ] 10 e –5 = 0.
E-42 4 [ A b / c ] 2 [ A b / c ] 4 [ ] [ 2nd ] [ A b / c d / e ] [ ] [ 2nd ] [A b / c d / e ] [ ] Example 23 4 [ A b / c ] 1 [ A b / c ] 2 [ 2nd ] [ F D ] [ ] Example 24 8 [ A b / c ] 4 [ A b / c ] 5 [ + ] 3.75 [ ] Example 25 2 rad. = 360 deg.
E-43 [ ] 2 [ 2nd ] [ ] [ 2nd ] [ DMS ] [ ] [ ] [ ] [ ] [ ] Example 26 1.5 = 1 O 30 I 0 II ( DMS ) 1.5 [ 2n d ] [ DMS ] [ ] [ ] [ ] Example 27 2 0 45 I 10.
E-44 [ ] [ ] Example 28 sin30 Deg . = 0.5 [ DRG ] [ ] [ sin ] 30 [ ] 11 si n30 R ad. = – 0.9 880 316 24 [ DRG ] [ ] [ ] [ sin ] 30 [ ] 12 sin –1 0. 5 = 33.33333333 G ra d. [ DRG ] [ ] [ ] [ 2nd ] [ sin –1 ] 0.5 [ ] Example 29 cosh1. 5+2 = 4.
E-45 [ 2nd ] [ HYP ] [ cos ] 1. 5 [ ] [ + ] 2 [ ] 13 sinh –1 7 = 2. 644120 7 61 [ 2nd ] [ HYP ] [ 2nd ] [ sin –1 ] 7 [ ] Example 30 If x = 5 and y = 30, w hat a re r and ? Ans : r = 30.
E-46 [ 2nd ] [ R P ] [ ] [ ] 25 [ ALP HA ] [ ] 56 [ ] [ 2nd ] [ R P ] [ ] [ ] [ ] 25 [ ALP HA ] [ ] 56 [ ] Example 31 5 ! = 120 5 [ MA TH ] [ ] [ ] 15 Generate a random nu mber b etween 0 and 1 [ .
E-47 16 Gen erate a random integer between 7 and 9 [ MA TH ] [ ] [ ] 7 [ ALPHA ] [ ] 9 [ ] 17 RND ( sin 45 Deg. ) = 0.71 ( F IX = 2 ) [ MA TH ] [ ] [ ] [ ] [ sin ] 4 5 [ 2nd ] [ FIX ] [ ] [ ] [ ] [ ] [ ] 18 MAX ( sin 30 Deg. , sin 90 Deg . ) = MAX ( 0.
E-48 [ MA TH ] [ MA TH ] [ ] [ ] [ sin ] 30 [ ] [ ALPHA ] [ ] [ sin ] 90 [ ] 20 S UM (13, 15, 2 3 ) = 51 [ MA TH ] [ MA TH ] [ ] [ ] 13 [ ALPHA ] [ ] 15 [ ALPHA ] [ ] 2 3 [ ] 21 A VG (13, 15, 2 3 ) = 17 [ MA TH ] [ MA TH ] [ ] [ ] [ ] 13 [ ALPHA ] [ ] 15 [ ALPHA ] [ ] 2 3 [ ] 22 Fra c ( 1 0 8 ) = F rac ( 1.
E-49 [ ] 10 [ ] 8 [ ] 23 INT (10 8 ) = INT ( 1.2 5 ) = 1 [ MA TH ] [ MA TH ] [ MA TH ] [ ] [ ] 10 [ ] 8 [ ] 24 S GN ( log 0. 01 ) = SGN ( – 2 ) = – 1 [ MA TH ] [ MA TH ] [ MA TH ] [ ] [ ] [ log ] 0. 01 [ ] 25 AB S ( log 0. 01) = ABS ( – 2 ) = 2 [ MA TH ] [ MA TH ] [ MA TH ] [ ] [ ] [ ] [ log ] 0.
E-50 26 7 ! [ ( 7 – 4 ) ! ] = 84 0 7 [ MA TH ] [ MA TH ] [ MA TH ] [ MA TH ] [ ] 4 [ ] 27 7 ! [ ( 7 – 4 ) ! × 4 ] = 35 7 [ MA TH ] [ MA TH ] [ MA TH ] [ MA TH ] [ ] [ ] 4 [ ] Example 32 1.
E-51 4 [ 2nd ] [ ] 81 [ ] 30 7 4 = 2 401 7 [ 2nd ] [ ^ ] 4 [ ] Example 33 1 yd 2 = 9 ft 2 = 0.0000008 36 km 2 1 [ 2nd ] [ CONV ] [ 2nd ] [ CONV ] [ ] [ ] [ ] [ ] [ ] Example 3 4 3 × G = 2 .
E-52 3 [ × ] [ 2nd ] [ CON S T ] [ ] [ ] [ ] [ ] Example 35 Apply the m ulti-statement functi on to the follo wing two statements: ( E=15 ) 15 [ S A VE ] [ E ] [ ] [ ALPHA ] [ E ] [ × ] 13 [ ALP.
E-53 [ Graph ] [ 2nd ] [ e x ] [ ] Example 37 (1) R ange : X min = – 180, X max = 180, X sc l = 90, Y min = – 1.2 5, Y max = 1.2 5, Y scl = 0. 5, Graph Y = sin (2 x) [ Range ] [ ( – ) ] 180 [ ] 180 [ ] 90 [ ] [ (–) ] 1.
E-54 [ G T ] [ G T ] 31 ( 2) Z oom in and zoom out on Y = sin (2x) [ 2nd ] [ Z oom x f ] [ 2nd ] [ Z oom x f ] [ 2nd ] [ Z oom Or g ] [ 2nd ] [ Z oom x 1 / f ] [ 2nd ] [ Z oom x 1 / f ] Example 38 .
E-55 [ Rang e ] [ (–) ] 8 [ ] 8 [ ] 2 [ ] [ (–) ] 15 [ ] 15 [ ] 5 [ ] [ Graph ] [ ALP HA ] [ X ] [ 2nd ] [ x 3 ] [ + ] 3 [ ALPHA ] [ X ] [ x 2 ] [ – ] 6 [ ALPHA ] [ X ] [ – ] 8 [ ] [ Graph ] [.
E-56 [ Graph ] [ cos ] [ ] [ T race ] [ ] [ ] [ ] [ 2nd ] [ X Y ] Example 41 Draw and scroll the gra ph for Y = c os ( x ) [ Graph ] [ cos ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] Example 42 P lace poin ts at ( 5 , 5 ) , ( 5 , 10 ), ( 15 , 15 ) and ( 18, 15 ), and then use the Line functi on to connect the poin ts.
E-57 [ Rang e ] 0 [ ] 35 [ ] 5 [ ] 0 [ ] 23 [ ] 5 [ ] [ 2nd ] [ PL OT ] 5 [ ALPHA ] [ ] 5 [ ] [ 2nd ] [ X Y ] [ 2nd ] [ X Y ] [ 2nd ] [ PL OT ] 5 [ ALP HA ] [ ] 10 [ ] [ 2nd ] [ LINE ] [ ] [ 2nd ] [ P.
E-58 Example 43 Enter the data: X LSL = 2, X USL = 13, X 1 = 3, F RE Q 1 = 2 , X 2 = 5 , FRE Q 2 = 9 , X 3 = 12 , FREQ 3 = 7 , th en fi nd = 7 .5 , Sx = 3.
E-59 [ 2nd ] [ S T A T V AR ] [ ] [ ] [ Graph ] [ ] [ ] [ 2nd ] [ S T A T V AR ] [ ] [ ] [ ] [ ] [ ] [ Graph ] [ ].
E-60 [ 2nd ] [ S T A T V AR ] [ Graph ] [ ] [ ] [ ] Example 44 Enter the data : X LSL = 2 , X USL = 8, Y LSL = 3, Y USL = 9 , X 1 = 3, Y 1 = 4, X 2 = 5 , Y 2 = 7 , X 3 = 7 , Y 3 = 6, th en f ind = 5, Sx = 2 , Cax = 0, Ca y = 0.
E-61 [ 2nd ] [ S T A T V AR ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ Graph ] Example 45 In the data in Example 44, change Y 1 = 4 t o Y 1 = 9 an d X 2 = 5 t o X 2 = 8, then f ind Sx = 2 .
E-62 [ 2nd ] [ S T A T V AR ] [ ] [ ] Example 4 6 Enter the data : a x = 2 , X 1 = 3, FREQ 1 = 2 , X 2 = 5 , FREQ 2 = 9 , X 3 = 12 , FRE Q 3 = 7 , then f ind t = –1.
E-63 [ ] [ ] Example 4 7 Gi ven the foll owin g data, use linear regr essi on to estimate x ’ =? for y =5 7 3 and y ’= ? f or x = 19 X 15 17 21 28 Y 45 1 475 52 5 678 [ MODE ] 1 [ ] [ ] [ ] [ .
E-64 [ 2 nd ] [ S T A T V AR ] [ Graph ] [ 2nd ] [ S T A T V AR ] [ ] [ ] [ ] [ ] 5 7 3 [ ] [ 2nd ] [ S T A T V AR ] [ ] [ ] [ ] [ ] [ ] 19 [ ] Example 48 Gi ven the foll owi ng data, use quadr at.
E-65 [ ] [ ] [ ] [ ] [ DA TA ] [ ] 57 [ ] 101 [ ] 61 [ ] 117 [ ] 6 7 [ ]155 [ 2nd ] [ S T A T V AR ] [ Graph ] [ 2 nd ] [ S T A T V AR ] [ ] [ ] [ ] [ ] 143 [ ] [ ] [ 2nd ] [ S T A T V AR ] [ ] [ ] [ .
E-66 [ ] 58 [ ] Example 49 31 10 = 1F 16 = 11111 2 = 3 7 8 [ MODE ] 2 31 [ ] [ dhbo ] [ ] [ ] [ ] Example 50 4 777 10 = 1001010101001 2.
E-67 [ MODE ] 2 [ dhbo ] [ ] [ ] [ ] [ dhbo ] [ ] [ ] [ ] 4 777 [ ] [ ] [ ] [ ] Example 51 What is the negativ e of 3A 16 ? Ans : FFFFFFC6 [ MODE ] 2 [ dhbo ] [ ] [ ] [ NEG ] 3 [ / A ] [ ] Example.
E-68 [ MODE ] 2 [ dhbo ] [ ] [ ] [ dhbo ] [ ] [ ] [ ] 123 4 [ + ] [ dhbo ] [ ] [ ] [ ] [ ] 1[ IE ] [ IF ] [ ] [ dhbo ] [ ] [ ] [ ] 2 4 [ ] [ dhbo ] [ ] [ ] [ ] Example 53.
E-69 1010 2 AND ( A 16 OR 7 16 ) = 1010 2 = 10 10 [ MODE ] 2 [ dhbo ] [ ] [ ] [ ] [ dhbo ] [ ] [ ] [ ] [ ] [ ] 1010 [ AND ] [ ( ) ] [ dhbo ] [ ] [ ] [ ] [ ] [ / A ] [ OR ] [ dhbo ] [ ] [ ] [ ] [ ].
E-70 • Quo tient : Z 1 Z 2 = E + F i = RUN When the message “1 : + ” , “ 2 : – ” , “ 3 : × ” , “ 4 : / ” appears on the display , you can input a value f or “ O ” that cor.
E-71 [ ] ( 5 Second s ) [ ] 1 [ ] 17 [ ] 5 [ ] [ ( – ) ] 3 [ ] 14 [ ] (2) [ ] ( 5 Second s ) [ ] 2.
E-72 [ ] 10 [ ] 13 [ ] 6 [ ] 17 [ ] (3) [ ] ( 5 Second s ) [ ] 3 [ ] 2 [ ] [ ( – ) ] 5 [ ] 11 [ ] 17 [ ] (4).
E-73 [ ] ( 5 Second s ) [ ] 4 [ ] 6 [ ] 5 [ ] [ ( – ) ] 3 [ ] 4 [ ] Example 55 Create a program to determ ine solutions to t he quadrat ic equat ion A X 2 + B X + C = 0, D = B 2 – 4AC 1) D >.
E-74 RUN (1) 2 X 2 – 7 X + 5 = 0 X 1 = 2 .5 , X 2 = 1 [ ] 2 [ ] [ ( – ) ] ] 7 [ ] 5 [ ] (2) 25 X 2 – 7 0 X + 49 = 0 X = 1.4 [ ] 25 [ ] [ ( – ) ] 70 [ ] 49.
E-75 [ ] (3) X 2 + 2 X + 5 = 0 X 1 = – 1 + 2 i , X 2 = – 1 – 2 i [ ] 1 [ ] 2 [ ] 5 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ][ ] Example 56 Create a pr ogram to gener ate a common differ ence sequence ( A : F irst item, D : c ommon dif ference, N : numb er ) Sum : S ( N ) = A+(A+D)+( A+2D)+( A+3D)+.
E-76 RUN When the messa ge “ 1: A(N ), 2 :S (N) ” a ppears o n the di splay , you can input a “ P ” value to spec ify the type of operati on to be perform ed: 1 f o r A ( N ) 2 f o r S ( N.
E-77 (2) A = 3 , D = 2, N = 12 S (N) = S (12) = 168 [ ] ( 5 Second s ) 2 [ ] 3 [ ] 2 [ ] 12 [ ] Example 5 7 Create a progr am to generate a common rati o sequence ( A : Fir st item, R : com mon ratio, N : numbe r ) Sum : S ( N ) = A + AR + AR 2 + AR 3 .
E-78 RUN When the messa ge “ 1: A(N ), 2 :S (N) ” a ppears o n the di splay , you can input a “ P ” value to spec ify the type of operati on to be perform ed: 1 f o r A ( N ) 2 f o r S ( N.
E-79 [ ] (2) A = 5 , R = 4, N = 9 S (N) = S (9) = 43 69 05 [ ] ( 5 Second s ) 2 [ ] 5 [ ] 4 [ ] 9 [ ] (3) A = 7 ,R = 1, N = 14 S (N) = S (14) = 98 [ ] ( 5 Second s ) 2 [ ] 7 [ ] 1 [ ] 14.
E-80 [ ] Example 5 8 Create a progr am to determine the solut ions for linear equations of t he form: RUN [ ].
E-81 4 [ ] [ ( – ) ] 1 [ ] 30 [ ] 5 [ ] 9 [ ] 17 [ ] Example 5 9 Create three s ubro utines to stor e the follo wing f ormulas and th en use the GOSU B-PR OG command to write a mainroutine to e xecute the subroutines.
E-82 RUN N = 1.5, I = 486 , A = 2 CHARGE = 4. 5, P OWER = 2 43, V OL TA GE = 2 [ ] 1.5 [ ] ( 5 Second s ).
E-83 486 [ ] 2 [ ] ( 5 Second s ) Example 60 Create a pr ogram that graphs Y = – and Y = 2 X with the following range settings : X min = –3.4, X ma x = 3.
E-84 [ G T ] Example 61 Use a FOR loop to calculate 1 + 6 = ? , 1 + 5 = ? 1 + 4 = ?, 2 + 6 = ?, 2 + 5 = ? 2 + 4 = ? RUN [ ].
E-85 Example 6 2 Set the progr am type to “BaseN” and ev aluate ANS = 1010 2 AND ( Y OR 7 16 ) (1) If Y = /A 16 , Ans = 10 10 [ ] [ dhbo ] [ ] [ ] [ ] [ ] / A [ ] (2) If Y =11011 8 , Ans = 101.
E-86 [ ] [ ] [ dhbo ] [ ] [ ] [ ] RUN [ ] [ dhbo ] [ ] [ ] [ ] 11011 [ ] Example 63 Create a prog ram to e valuate th e follow ing, and insert a displa y result command ( ) to check t he content o.
E-87 RUN A = 10 C = 130 , D = 2 .5 5 [ ] 10 [ ] [ 2nd ] [ RCL ] [ ] [ ] [ CL / ESC ] [ ].
デバイスHP 9Gの購入後に(又は購入する前であっても)重要なポイントは、説明書をよく読むことです。その単純な理由はいくつかあります:
HP 9Gをまだ購入していないなら、この製品の基本情報を理解する良い機会です。まずは上にある説明書の最初のページをご覧ください。そこにはHP 9Gの技術情報の概要が記載されているはずです。デバイスがあなたのニーズを満たすかどうかは、ここで確認しましょう。HP 9Gの取扱説明書の次のページをよく読むことにより、製品の全機能やその取り扱いに関する情報を知ることができます。HP 9Gで得られた情報は、きっとあなたの購入の決断を手助けしてくれることでしょう。
HP 9Gを既にお持ちだが、まだ読んでいない場合は、上記の理由によりそれを行うべきです。そうすることにより機能を適切に使用しているか、又はHP 9Gの不適切な取り扱いによりその寿命を短くする危険を犯していないかどうかを知ることができます。
ですが、ユーザガイドが果たす重要な役割の一つは、HP 9Gに関する問題の解決を支援することです。そこにはほとんどの場合、トラブルシューティング、すなわちHP 9Gデバイスで最もよく起こりうる故障・不良とそれらの対処法についてのアドバイスを見つけることができるはずです。たとえ問題を解決できなかった場合でも、説明書にはカスタマー・サービスセンター又は最寄りのサービスセンターへの問い合わせ先等、次の対処法についての指示があるはずです。