HPメーカー8360の使用説明書/サービス説明書
ページ先へ移動 of 508
HP 8360 Series Synthesized Sweepers (Including Options 001, 003, 004, 006, and 008) User’s Handbook SERIAL NUMBERS This manual applies directly to any synthesized sweeper with serial number prefix combinations. You may have to modify this manual so that it applies directly to your instrument version.
Notice Restricted Rights Legend The information contained in this document is subject to change without notice. Hewlett-Packard makes no warranty of any kind with regard to this material, including but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Certification Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration meas.
Assistance Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products. For any assistance, contact your nearest Hewlett-Packard Sales and Service Ofice. Safety Notes The following safety notes are used throughout this manual.
General Safety Considerations WARNING l No operator serviceable parts inside. Refer servicing to qualified personnel. To prevent electrical shock, do not remove covers. n For continued protection against fire hazard replace line fuse only with same type and rating (F 5A/25OV).
CAUTION H Before switching on this instrument, make sure that the line voltage selector switch is set to the voltage of the power supply and the correct fuse is installed. n Always use the three-prong ac power cord supplied with this instrument. Failure to ensure adequate earth grounding by not using this cord may cause instrument damage.
PREFACE This manual provides user information for the HP 8360 Series Synthesized Sweepers. Instruments Covered This manual applies to instruments having a serial number prefix By This Manual listed on the title page (behind the “Documentation Map” tab).
User’s Handbook Tabs divide the major chapters of this manual. The contents of each Organization chapter is listed in the “Table of Contents.” HP 8360 Series Documentation Documentation Map For a pictorial representation of the HP 8360 series documentation, see the “Documentation Map” at the front of this manual.
Regulatory Information This product has been designed and tested in accordance with IEC Publication 1010, Safety Requirements for Electronic Measuring Apparatus, and has been supplied in a safe condition.
Notice for Germany: Noise Declaration LpA < 70 dB am Arbeitsplatz (operator position) normaler Betrieb (normal position) nach DIN 45635 T. 19 (per IS0 7779) Declaration of Conformity X.
DECLARATION OF CONFORMITY accor&g to ISOIIEC Quide 22 and EN 45014 Manufacturer’s Name: Hewlett-Packard Co. Manufacturer’s Address: Microwave Instruments Division 1400 Fountaingrove Parkway Sa.
Instrument Markings ! A Cd “ISMl-A” I I 0 I The instruction documentation symbol. The product is marked with this symbol when it is necessary for the user to refer to the instructions in the documentation. The CE mark is a registered trademark of the European Community.
Hewlett-Packard Sales and Service Offices US FIELD OPERATIONS Headquarters California, Northern Hewlett-Packard Co. Hewlett-Packard Co. 19320 Pruneridge Avenue 301 E. Evelyn Cupertino, CA 95014 Mountain View, CA 94041 (800) 752-0900 (415) 694-2000 California, Southern Hewlett-Packard Co.
Contents 1. GETTING STARTED What Is In This Chapter ............ How To Use This Chapter ............ Equipment Used In Examples ......... Introducing the HP 8360 Series Synthesized Sweepers Display Area .................. Entry Area .................
Peakin g .................. Tracking ................. ALC Bandwidth Selectio n ............ Using Step Sweep ............... Creating and Using a Frequency List ....... Using the Security Features ........... Changing the Preset Parameters ......... Getting Started Programmin g .
Reading Instrument Errors . . . . . . . . . . Example Programs .............. Example Program ............. Description ............... Program Listing ............. Program Comments ........... Details of Commands and Responses ....... In This Subsection .
2. A. Programming the Trigger System ......... In This Subsection .............. Generalized Trigger Model ........... Overview ................. Details of Trigger States ........... Inside the Idle State ........... Inside the Initiate State .......
hM Type 100%fV ................ A-19 ANALYZER STATUS REGISTER ........ A-19 ArrowKeys .................. A-21 (ASSIGN) .- . . . . Auto Fill Incr . Auto Fill %Pts . Auto Fill Start Auto Fill Stop . Auto Track . . . B. Blank Disp . . C. [CENTER). . . . Center=Marker Clear Fault .
E. 8360 Adz-s .................. Enter Cum .................. EnterFreq .................. Enter List Dwell .............. Enter List Freq ............... Enter List Offset .............. ENTRY KEYS ................. [ENTR~~N/OFF] ................. ExtDetCal .
H. I. L. HP-IB Address ................. HP-IB Menu .................. Internal AM Depth . . . . . . . . . . . . . . Internal AM Rate .............. Internal AM Waveform Noise ......... Internal AM Waveform Ramp .......... Internal AM Waveform Sine ..
M. MI--M2 Sweep .......... : ...... Manual Sweep ................. (MARKER) .................... MarkerMi .................. Marker M2 .................. MarkerM3 .................. Marker M4 .................. MarkerM5 .................. Markers All Off .
Printer Adxs . . . . . . . . . . . . . . . . . (PRIOR) . . . . . . . . . . . . Programming Language Analyzr Programming Language CIIL . . Programming Language SCPI . . P t Trig Menu . . . . . . . . . Pulse Delay Normal . . . . . Pulse Delay Txig'd .
. . . . . . . . . . . ........... ........... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........... ........... ........... ........... ........... . . . . . . . . . . . ........... ........... ...........
Z. ZeroFreq .................. Wavef ofllt Nenu ................ Zoom ..................... 2a. ERROR MESSAGES Introduction .................. Front Panel Error Messages in Alphabetical Order . SCPI Error Messages in Numerical Order ..... Synthesizer Specific SCPI Error Messages .
Contents-l 2 Modulation .................. 2c-10 Pulse .................... 2c-10 AM and Scan ................ 2c-11 FM ..................... 2c-12 Simultaneous Modulations ........... 2c-12 Internal Modulation Generator Option 002 .... 2c-13 AM,FM ..
3. INSTALLATION Initial Inspection ................ Equipment Supplied .............. Options Available ............... Preparation for Use ............... Power Requirements ............. Line Voltage and Fuse Selection ........ Power Cable .........
Test and Measurement System Language . . . Control Interface Intermediate Language . . . Converting from Network Analyzer Language to SCPI . . . . . . . . . . . . . . . . . . Numeric Suffixes . . . . . . . . . . . . . . Status Bytes . . . . . . . . . .
Figures O-l. Typical Serial Number Label . . . . . . . . . . l-l. The HP 83620A Synthesized Sweeper . . . . . . 1-2. Display . . . . . . . . . . . . . . . . . . . l-3. Entry Area . . . . . . . . . . . . . . . . . l-4. CW Operation and Start/Stop Frequency Sweep .
l-37. Inside the Initiate State ............ l-38. Inside an Event Detection State ........ l-39. Inside the Sequence Operation State ...... l-40. The INIT Trigger Configuration ........ 1-41. The TRIG Trigger Configuration ........ l-42. HP 8360 Simplified Trigger Model .
Tables l-l. Keys Under Discussion in This Section . . . . . l-2. SWEep Command Table . . . . . . . . . . . l-3. SCPI Data Types . . . . . . . . . . . . . . l-4. Sample Synthesizer Commands . . . . . . . . . C-l. Pin Description of the Auxiliary Interface .
1 GETTING STARTED What Is In This Chapter This chapter contains information on how to use the HP 8360 Series Synthesized Sweeper. The information is separated into three sections. Basic Advanced Programming For the novice user unfamiliar with the HP 8360 Series Synthesized Sweepers.
How To Use This Chapter To use this chapter effectively, refer to the tabbed section “Menu Maps”. Menu maps can be folded out to be viewed at the same time as the Getting Started information, as illustrated. I ’ 1 Equipment Used In The following table lists the equipment used in the operation Examples examples shown in this chapter.
PACKARD lMENU SELEU Getting Started Basic Introducing the HP 8360 Series Synthesized Sweepers The HP 8360 Series Synthesized Sweepers are high performance, broadband frequency synthesizers. PRESET Figure l-l. The HP 83620A Synthesized Sweeper (PRESET) initializes the front panel settings and runs the synthesizer through a brief self-test.
Display Area SOFTKEYS I ACTIVE ENTRY AND DATA DISPLAY AREA -MESSAGE LINE I SOFTKEY LABEL AREA Figure l-2. Display Active Entry and Data Display Area: This area typically displays the frequency and power information of the current instrument state. When data entry is expected, the synthesizer uses all or part of this area to record the entries.
Entry Area All function values are changed via the rotary knob and/or keys of the entry area. ENTRY ENTRY ON ON/OFF LED ARROW KEY’S , ENTRY / ROTARY KNOB TERMINATOR KMS NUMERIC NEGATlVE SIGN/ ENTRY KEYS BACKSPACE Figure l-3. Entry Area The following are active only when the synthesizer expects an input.
CW Operation and Start/Stop Frequency Sweep CW Operation CW operation is one of the major functions of the synthesizer, and is easy to do using front panel keys. In CW operation, the synthesizer produces a single, low-noise, synthesized frequency. Try this example: Press(CW)(iJ@(J@@@@(7J@IGHz).
dLETT , ,- ENlRRy K .ARO - INSWMENT STATE SOURCE MODULE INTERFACE SWEEP LED CW Operation cw START STOP Figure 1-4. CW Operation and Start/Stop Frequency Sweep start/stop Frequency Sweep 1. Press Icw). 2. Enter value. 3. Press terminator key. 1. Press @TiF).
Center Frequency/Span Operation Center frequency/span is another way of establishing swept operation. This is just a different way of defining sweep limits. As an example of center frequency/span operation: Press m(7J IGHz). Press ISPAN) (iJ (GHz). The synthesizer is now sweeping from 3.
SWEEP LED CENTER SPAN Figure 1-5. Center Frequency and Span Operation Center Frequent y Span Operation 1. Press (jCENTEji). 2. Enter value. 3. Press terminator key.
Power Level and Sweep Time Operation Power Level Operation The synthesizer can produce leveled power for CW, swept frequency, or power sweep operation. The selected power level can range from -20 dBm (-110 dBm for option 001 synthesizers) to +25 dBm. For practice: Press ( POWER LEVEL ) I-] @ @ (dB(mL).
. .,WLETT L”pI PACKARO / SWEEP TIME SWEEP LED POWER LEVEL Figure 1-6. Power Level and Sweep Time Operation Power Level Sweep Time Operation Operation 1. Press CPOWER LEVEL). 2. Enter value. 3. Press IdBo). 1. Press &WEEP TtME]. 2. Enter value. 3.
Continuous, and Manual Operation Single, Continuous sweep is the operation mode set when the synthesizer is Sweep preset. It simply means that when the synthesizer is performing a swept operation, the sweeps will continuously sweep-retrace-sweep- retrace until a different sweep mode is selected.
SWEEP LED SINGLE CONT SWEEP MENU Figure 1-7. Continuous, Single, and Manual Sweep Operation Single Sweep 1. Press (SINGLE). Continuous Sweep 1. Press c-1. Manual Sweep 1. Press SWEEP (MENU). 2. Press Manual Sweep 3. Use the rotary knob to adjust frequency.
Marker Operation The synthesizer has five frequency markers that can be used as fixed frequency “landmarks,” or as variable frequency pointers on a CRT display. To view the marker features of the synthesizer on a CRT, connect the synthesizer as shown in Figure 1-8.
Marker 1 was chosen because it is selected as the delta marker reference. To change reference markers, select Delta Mkr Ref . Select M2 as the reference.
Saving and Recalling an Instrument State The save/recall registers store and access a previously set instrument state. For example, set the synthesizer to sweep from 3 to 15 GHz at a -10 dB power level, with markers 1 and 2 set at 4.5 and 11.2 GHz. Press [START) (7J (GHz).
RECALL Figure 1-9. Saving and Recalling an Instrument State Save 1. Setup synthesizer as desired. 2. Press [SAVE. 3. Press a number 1 through 8. Recall 1.
Power Sweep and Power Slope Operation Power Sweep Operation The power sweep function allows the power output to be swept (positive or negative) when the synthesizer is in the CW frequency mode. The power output of the synthesizer determines the maximum leveled power sweep that can be accomplished.
Select Power Sweep (asterisk on). Press (SINGLE]. The synthesizer performs a power sweep beginning at -20 dBm and ending at f5 dBm. The power meter indicates +25 dB. Power Slope Operation This function allows for compensation of high frequency system or cable losses by linearly increasing the power output as the frequency increases.
SYNTHESIZER POUER IlETER ‘UT Figure l-10. Power Sweep and Power Slope Operation Power Sweep Power Slope 1. Press POWER (jMENU). 1. Press POWER (jj). 2. Select Pouer Saeep . 2. Select Power Slope 3. Enter a value. 3. Enter a value. 4. Press terminator key.
Advanced Getting Started Advanced This section of Chapter 1 describes the use of many of the unique features of the HP 8360 Series Synthesized Sweepers. The format used is similar to the one used on the previous pages. When referred to a menu map number, go to the Menu Map tab and unfold the menu map so that you can view it together with the text.
Paragraph Heading Optimizing Synthesizer Performance continued Advanced Table l-l. Keys Under Discussion in This Section (continued) Keys Auto Track Peak RF Always Peak RF Once Sap Span Cal Once Sap S.
Externally Leveling the Synthesizer In externally leveled operations, the output power from the synthesizer is detected by an external sensor. The output of this detector is returned to the leveling circuitry, and the output power is automatically adjusted to keep power constant at the point of detection.
To level externally: 1. Setup the equipment as shown. For this example, the detector/coupler setup is used. 2. Refer to menu map 1. 3. Press (ALC). 4. Select Leveling Point ExtDet . 5. Set the coupling factor. Select Coupling Factor c-) @ @ (dB(m)). Note Power splitters have a coupling factor of 0 dB.
100 mV 10 mV iii SQUARE LAW ASYMPTOTE 1 mV .l mV DETECTOR INPUT POWER, dBm Figure 1-12. Typical Diode Detector Response at 25°C +20 d6V +lO dBV 0 dBV -10 dBV -20 dBV -30 dBV -40 dBV -50 dBV -60 dBV .
External Leveling Used With the Optional Step Attenuator Some external leveling applications require low output power from the synthesizer. The synthesizer automatically uncouples the attenuator from the ALC system for all external leveling points. Press ( POWER LEVEL ).
Leveling with Power Leveling with a power meter is similar to leveling with a diode Meters detector. Figure 1-13 shows the setup for power meter leveling. SYNTHESIZER POUER HETER Figure 1-13. Leveling with a Power Meter 1. Set up the equipment as shown.
Leveling with MM-wave Millimeter-wave source module leveling is similar to power meter Source Modules leveling. The following figures illustrate the setups for leveling with a mm-wave source module.
6 RF OUT AORPTER (IF REQUIRED) RF IN 4 0 -0 RF nICROUAVE AWPLIFIER OUT I’ll-LINE SOURCE NODULE Figure 1-15. MM-wave Source Module Leveling Using a Microwave Amplifier 1. Set up the equipment as shown. 2. Refer to menu map 1. 3. Select Leveling Point Module.
Working with Mixers/Reverse Power Effects Note Uncoupled operation applies to Option 001 synthesizers only. Uncoupled operation is useful when working with mixers. Figure 1-16 shows a hypothetical setup where the synthesizer is providing a small signal to a mixer.
swrNEsl2ER WlTN OPflON Do1 DETECTOR MEASURES -8 dBm MC LEVEL DETECTOR MUISURES -5 dBm REVERSEPOWER RF OUTPUT MIXER ig-y- LO Q LO Ll%EL I = +lO dBm -5dBm IF Figure l-16.
Working with Spectrum Analyzers/Reverse Power Effects Reverse power is a problem with spectrum analyzers that do not have preselection capability. Some analyzers have as much as +5 dBm LO feedthrough coming out of their RF input, at some frequencies. The effects of reverse power are less in the heterodyne band (0.
Optimizing Synthesizer Performance Creating and Applying The following examples demonstrate the user flatness correction the User Flatness feature: Correction Array 1. Using an HP 437B power meter to automatically enter correction data for a swept 4 to 10 GHz measurement.
Creating a User Flatness Array Automatically, Example 1 In this example, a flatness array containing correction frequencies from 4 to 10 GHz at 1 GHz intervals is created. An HP 438B power meter controlled by the synthesizer through the interface bus is used to enter the correction data into the flatness array.
Setup Synthesizer Parameters 6. On the synthesizer, press (PRESET). 7. FREQUENCY ISTART) @ LGHz), LSTOP) 0 @ LGHz). 8. (POWER LEVEL) (TJ m. Access User Flatness Correction Menu 9. 10. 11. 12 13 14. Press POWER [MENU). Select Fitness Menu. Select Delete Menu Delete All .
Creating a User Flatness Array, Example 2 This example shows how to use the synthesizer and a power meter in manual entry mode. This example also introduces two features of the synthesizer. The softkey Freq Follow simplifies the data entry process and the softkey List Mode sets up a list of arbitrary test frequencies.
Figure 1-19. Creating a User Flatness Array For this example, refer to menu map 5, POWER. 1. 2. 3. 4. 5. 6. 7. 8. The equipment setup shown in Figure 1-19 assumes that if your setup has an external leveling configuration, the steps necessary to correctly level have been followed.
Access User Flatness Correction Menu 9. Press POWER (z). Select Fitness Menu. 10. Select Delete Menu Delete All. This step insures that the flatness array is empty. 11. Press (=I. Leave the delete menu and return to the previous soft key menu. 12. Select Copy List This step copies the frequency list into the correction table in sequential order.
Swept mm-wave Measurement with Arbitrary Correction Frequencies, Example 3 The focus of this example is to use user flatness correction to obtain flat power at the output of the HP 83550 series mm-wave source modules. In this case we will use non-sequential correction frequencies in a swept 26.
Creating SYNTHESIZER HP 4378 POUER flETER SYNTHFSIZER HP ‘l37B POULR NFTFR HICROURVE RNPLIFIER Figure l-20. Arbitrarily Spaced Frequency-Correction Pairs in a Swept mm-wave Environment For this example, refer to menu map 5, POWER.
Note U, V, and W-band power sensors are not available from Hewlett-Packard. For these frequencies use the Anritsu ML83A Power Meter with the MP715-004 (40 to 60 GHz), the MP716A (50 to 75 GHz), or the MP81B (75 to 110 GHz) power sensors.
using (address 13 is assumed). Refer to the menu map 8, System, for the key sequence necessary to reach softkey Meter Adrs . Enable User Flatness Correction 13. When the operation is complete, (a message is displayed) the flatness correction array is ready to be applied to your setup.
Note Scalar Analysis Measurement with User Flatness Corrections, Example 4 The following example demonstrates how to setup a scalar analysis measurement (using an HP 8757 Scalar Network Analyzer) of a 2 to 20 GHz test device such as, an amplifier.
the stored register. Make sure that user flatness correction is still enabled before making the measurement. When an HP 437B power meter is used to automatically enter the correction data, the correction calibration routine automatically turns off any active modulation, then re-activates the modulation upon the completion of the data entry process.
9. Press (PRIOR). Leave the delete menu and return to the previous soft key menu. 10. Select Auto Fill Start @ m). Set the first frequency in correction table to 2 GHz. 11. Auto Fill Stop @ @J (GHz). Set the last frequency in correction table to 20 GHz.
23. On the synthesizer, press [FLTNESS ON/OFF) (amber LED on). The power produced at the point where the power meter/sensor was disconnected is now calibrated at the frequencies and power level specified above.
Using Detector Detector calibration is useful for characterizing and compensating for Calibration negative diode detectors used in external leveling. Detectors may be characterized by three operating regions as shown in Figure 1-12: the square law, the linear, and the transition region.
If an HP-IB error message is displayed verify that the interface connections are correct. Check the HP-IB address of the power meter and ensure that it is the same address the synthesizer is using (address 13 is assumed). Refer to the menu map 8, System, for the key sequence necessary to reach softkey Meter A&s .
Using the Tracking Feature Peaking Peaking is the function that aligns the output filter (YTM) so that its passband is centered on the RF output, in CW or manual-sweep mode. Use peaking to obtain the maximum available power and spectral purity, and best pulse envelopes, at any given frequency above 2.
ALC Bandwidth Selection The ALC bandwidth defaults at factory preset to the auto selection ALC Bandwidth Select Auto which selects the appropriate bandwidth (high or low) for each application. To make the bandwidth selection, the synthesizer determines which functions are activated and uses the decision tree shown in Figure l-23.
Using Step Sweep 1. Refer to menu map 2. 2. Press FREQUENCY [e]. 3. Select Step Swp Menu. 4. Select Step Size. Enter the desired increment value. 5. Select Step Points.
Creating and Using a Frequency List 1. Refer to menu map 2. 2. Press FREQUENCY (hnENU). 3. Select List Menu. To use the frequency points of a frequency list to create the frequency portion of the user flatness correction array: 1. Refer to menu map 5.
Using the Security To access the security menu: Features 1. Refer to menu map 8. 2. Press SYSTEM @K). 3. Select Security Menu. Getting Started Advanced l-53.
Changing the Preset 1. Setup the synthesizer in the desired operation state to be used as Parameters the preset state. 2. Refer to menu map 8. 3. Press SYSTEM (e). 4. Select Save User Preset. 5. Select Preset Mode User. Whenever the (PRESET) key is pressed, the synthesizer will return to the operation state setup and saved in steps 1 and 4.
Programming Getting Started Programming HP-IB, the Hewlett-Packard Interface Bus, is the instrument-to- instrument communication system between the synthesizer and up to 14 other instruments. Any instrument having HP-IB capability can be interfaced to the synthesizer, including non-HP instruments that have “GPIB,” “IEEE-488,” “ ANSI MC1.
HP-IB General Information Interconnecting Cables Instrument Addresses HP-IB Instrument Nomenclature Programming the Synthesizer 1-56 Getting Started Programming Figure C-2 shows the synthesizer rear-panel HP-IB connector and suitable cables, and describes the procedures and limitations for interconnecting instruments.
In the programming explanations that follow, specific examples are included that are written in a generic dialect of the BASIC language. BASIC was selected because the majority of HP-IB computers have BASIC language capability. However, other languages can also be used.
Remote Remote causes an instrument to change from local control to remote control. In remote control, the front panel keys are disabled (except for the (LOCAL] key and the POWER switch), and the amber REMOTE annunciator is lighted. The syntax is: where the device selector is the address of the instrument appended to the HP-IB port number.
Local Local is the complement to REMOTE, causing an instrument to return to local control with a fully enabled front panel. The syntax is: Some BASIC examples: 10 LOCAL 7 which effects all instruments in the network, or 10 LOCAL 719 for an addressed instrument (address 19).
to clear an addressed instrument. Related statements used by some computers: RESET CONTROL SEND The preceding statements are primarily management commands that do not incorporate programming codes. The following two statements do incorporate programming codes, and are used for data communication.
CONVERT IMAGE IOBUFFER TRANSFER Enter Enter is the complement of OUTPUT, and is used to transfer data from the addressed instrument to the controller. The syntax is: ENTER is always used in conjunction with OUTPUT, such as: 100 OUTPUT 719; ” . . . programming codes .
(line feed) is received. However, the LF bit pattern could coincidentally occur randomly in a long string of binary data, where it might cause a false termination. Also, the bit patterns for the ASCII CR (carriage return), comma, or semicolon might cause a false termination.
Getting Started with This section of Chapter 1 describes the use of the Standard SCPI Commands for Programmable Instruments language (SCPI). This section explains how to use SCPI commands in general. The instrument command summary (at the end of this chapter) lists the specific commands available in your instrument.
Standard Notation This section uses several forms of notation that have specific meaning. Command Mnemonics Many commands have both a long and a short form, and you must use either one or the other (SCPI does not accept a combination of the two). Consider the FREQuency command, for example.
Commands and Responses,” discusses message terminators in more detail. Response Examples Response examples look like this: 1.23 These are the characters you would read from an instrument after sending a query command.
Essentials for Beginners This subsection discusses elementary concepts critical to first-time users of SCPI. Read and understand this subsection before going on to another. This subsection includes the following topics: Program and Response Messages These paragraphs introduce the basic types of messages sent between instruments and controllers.
.
root level 1 BB cc DD c +I rtl level 2 EE FF GG HH Figure l-25. A Simplified Command Tree JJ In the command tree shown in Figure l-25, the command closest to the top is the root command, or simply the root. Notice that you must follow a particular path to reach lower level subcommands.
n Semicolon A semicolon separates two commands in the same message without changing the current path. w Whitespace White space characters, such as <tab> and <space>, are generally ignored. There are two important exceptions. White space inside a keyword, such as :FREq uency, is not allowed.
- BB cc DD l-h rtl EE FF GG HH JJ QQ R D 0 R Sets current path to ROOT :AA:BB:EE;FF;GG 0 N NO change to current path 0 D Set current path DOWN one level 4) vmv :AA:BB:EE; :AA:DD:JJ Figure l-26. Proper Use of the Colon and Semicolon In Figure l-26, notice how proper use of the semicolon can save typing.
Subsystem Command These paragraphs introduce a more complete, compact way of Tables documenting subsystems using a tabular format. The command table contains more information than just the command hierarchy shown in a graphical tree. In particular, these tables list command parameters for each command and response data formats for queries.
the matching command. The parameter type is listed adjacent to each named parameter. More About Commands Query and Event Commands. Because you can query any value that you can set, the query form of each command is not shown explicitly in the command tables.
The command is correct and will not cause errors. It is equivalent to sending: “FREquency : CW 5 GHZ ; : FREUuency :MULTiplier 2”. Example 2: “FREquency 5 GHZ; MULTiplier 2” This command results in a command error. The command makes use of the default [:CW] node.
-7.89E-01 use either E or e in exponentials +256 leading + allowed .5 digits left of decimal point optional Examples of numeric parameters in commands: 100 OUTPUT @Source ; ” : FREquency : STARt l.OE+09” 1 IO OUTPUT @Source ; I’ : LIST:FREquency lO.
Although discrete parameters values look like command keywords, do not confuse the two. In particular, be sure to use colons and spaces properly. Use a colon to separate command mnemonics from each other. Use a space to separate parameters from command mnemonics.
Example Programs The following is an example program using SCPI compatible instruments. The example is written in HP BASIC. This example is a stimulus and response application. It uses a source and counter to test a voltage controlled oscillator. Example Program Description.
210 OUTPUT OStimulus;"*IDN?" 220 ENTER OStimulus;Id$ 230 PRINT Id$ 240 PRINT 250 ! 260 PRINT "Counter Used II . . . 270 OUTPUT OResponse;"*IDN?" 280 ENTER QResponse;Id$ 290 PR.
a 1 in the source Output Queue. The program waits at line 410 until the 1 returned by *OPC? is entered. Note that following each OUTPUT containing a query is an ENTER to retrieve the queried value. If you do not use paired OUTPUT S and ENTER S , you can overwrite data in the instrument Output Queue and generate instrument errors.
Details of Commands and Responses In This Subsection This subsection describes the syntax of SCPI commands and responses. It provides many examples of the data types used for command parameters and response data.
a semicolon. You must always end a program message with one of the three program message terminators shown in Figure l-29. Use <new line>, C-END>, or <new line> <-END> as the program message terminator. The word <-END>> means that EOI is asserted on the HP-IB interface at the same time the preceding data byte is sent.
NOTE: SP = white space, ASCII characters 0 ,. to 9 ,. and 11 ,. to 32 ,. Figure 1-31. Simplified Common Command Syntax As with subsystem commands, use a <space> to separate a command mnemonic from subsequent parameters. Separate adjacent parameters with a comma.
SCPI Data Types Table 1-3. SCPI Data Types Parameter Types Response Data Types Numeric c Real or Integer Extended Numeric Integer Discrete Discrete Boolean Numeric Boolean String Definite Length Block.
rounds the parameter. For example, if an instrument has a programmable output impedance of 50 or 75 ohms, you specified 76.1 for output impedance, the value is rounded to 75. If the instrument setting can only assume integer values, it automatically rounds the value to an integer.
Discrete Parameters. Use discrete parameters to program settings that have a finite number of values. Discrete parameters use mnemonics to represent each valid setting. They have a long and a short form, just like command mnemonics. You can used mixed upper and lower case letters for discrete parameters.
Integer Response Data. Integer response data are decimal representations of integer values including optional signs. Most status register related queries return integer response data. Examples of integer response data: 0 signs are optional +lOO leading + sign allowed -100 leading sign allowed 256 never any decimal point Discrete Response Data.
Programming Typical Measurements In This Subsection This subsection illustrates how the general SCPI concepts presented in previous subsections apply to programming real measurements. To introduce you to programming with SCPI, we must list the commands for the synthesizer.
Use of the Command Tables In Table 1-4, notice that a new column titled “Allowed Values” has been added to the command table. This column lists the specific values or range of values allowed for each parameter. A vertical bar (I) separates values in a list from which you must choose one value.
Table 1-4. Sample Synthesizer Commands (continued) HP-IB Chec Command Parameters POWer :ATTenuation atten setting :AUTO coupled atten [:LEVel] output level Parameter Type Allowed Values extended numer.
Program Comments 10: Setup a variable to contain the HP-IB address of the source. 20: Abort any bus activity and return the HP-IB interfaces to their reset states. 30: Place the source into LOCAL to cancel’any Local Lockouts that may have been setup.
HINT Setting Up A Typical Sweep, Example Program 3 3. 4. 5. 6. 7. 8. 9. 10. Clear the controller display and run the program. ] that the REMOTE LED on the synthesizer is lit. From the front panel, attempt to change the start frequency and verify that this is impossible.
50 REMOTE Source 60 OUTPUT Source;"*RST" 70 OUTPUT Source;"FREQuency:MODE SWEep" 80 OUTPUT Source;"FREQuency:STARt 4 GHZ" 90 OUTPUT Source;"FREQuency:STOP 7 GHz".
160: The source has now completed processing the commands. The RF frequency, power, and markers are at their programmed values. Turn on the RF output of the source. 170: Select a continuously initiated sweep instead of the default mode of non-continuous that was selected with “RST.
70: Set the source to its initial state for programming. 80: Setup the source power level using a compound message. 90: Query the value of the source’s CW frequency. 100: Enter the query response into the variable ‘F’. The response always is returned in fundamental units, Hz in the case of frequency.
70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 OUTPUT Source;"*RST;FREQ:MODE SWE;STAR 4GHZ ;STOP 5GHZ;:INIT:CONT ON" OUTPUT Source;"*SAV 1" CLS PRINT "A sweeping state has been saved in REGISTER 1." OUTPUT Source;"*RST;FREQ:CW 1.
160: Recall the instrument state from register 1. It should contain the sweeping state. 170 to 190: Print a message on the computer display and pause. 200: Recall the instrument state from register 2. It should contain the CW state. 210 and 220: Print messages on the computer display.
100: Setup the source’s sweep time to 1 second. 110: Send the "OPC? command to the source to ensure that the previous commands are completed and the source is ready to begin controlled sweeps. 120: Enter the response to the *OPC? into the variable X.
190 NEXT I 200 PRINT “Finished sending commands to source. ‘I 210 PRINT “Note that execution is continuing for four cycles.” 220 END Run the program. Program Comments 10: Assign the source’s HP-IB address to a variable. 20 to 50: Abort any HP-IB activity and initialize the HP-IB interface.
Using the User Flatness Correction Commands, Example Program 8 The following program interrogates the synthesizer and an HP 437B power meter for frequency and power information respectively. The synthesizer (an HP 83620A) is programmed to sweep from 2 to 20 GHz, with frequency-correction pairs every 100 MHz and +5 dBm leveled output power.
360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 600 610 620 630 640 650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 810 820 830 840 OUTPUT @.
860 Pl=VAL(Power$) 870 Slope2=SGN(P2-PI) 880 IF Slope2Slope THEN 890 Flips=Flips+l 900 Slopel=Slope 910 ELSE 920 IF Slope2=0 THEN Flips=Flips+.2 930 END IF 940 PO=Pl 950 UNTIL Flips>=3 960 Power=(P.
Programming the Status System In This Subsection This subsection discusses the structure of the status system used in SCPI instruments, and explains how to program status registers. An important feature of SCPI instruments is that they all implement status registers the same way.
There may or may not be a command to read a particular condition register. Transition Filter The transition filter specifies which types of bit state changes in the condition register will set corresponding bits in the event register. Transition filter bits may be set for positive transitions (PTR), negative transitions (NTR), or both.
Case A Case B Case C Case D Condition 4-4-N-L Tl T2 T3 T4 T5 Figure l-34. Typical Status Register Bit Changes Getting Started Programming l-103.
Programming the Trigger System In This Subsection This subsection discusses the layered trigger model used in SCPI instruments. It also outlines some commonly encountered trigger configurations and programming methods.
operation state signals the instrument hardware to take some action, and listens for a signal that the action has been taken. Idle :ABORt *RST Initiate Event Detection #l A v Event Detection #N Sequence * Instrument Operation Actions Figure l-35.
:ABORt *RST Figure l-36. Inside the Idle State Turning power on, or sending *RST or :ABORT forces the trigger system to the idle state. The trigger system remains in the idle state until it is initiated by 1NITiate:IMMediate or INITiate: CONTinuous ON .
upward path and 1NITiate:CONTinuous is OFF, it exits upward to the idle state. Inside Event Detection States. Figure 1-38 illustrates the operation of an arbitrary event detection state named <state-name>. Typical <state-names >are TRIGger, ARM, STARt , and STOP.
.
Inside the Sequence Operation State. Figure l-39 illustrates the operation of the sequence operation state. The downward entrance to the Sequence Operation State signals that some instrument dependent action should begin at once. An upward exit is not allowed until the instrument signals that its action is complete.
Idle _ :ABORt *RST Initiate Sequence b Instrument Actions Figure l-40. The INIT Trigger Configuration Command Parameters :ABORt :INITiate [:IMMediate] :CONTinuous state Parameter Type I 7 Boolean Exam.
EXT >- BUS + IMMED O- & b Initiate TRIG Event Detection IMMED Sequence I_) Instrument 1 BUS Actions EXT I Figure 1-41. The TRIG Trigger Configuration Description of The HP 8360 series synthesizers follow the SCPI model of triggering. Triggering in the HP It is a layered model with the structure shown in Figure l-42.
the sweep is initiated. This can happen on a continuous basis (INIT : CONT ON) or on a demand basis (INIT : CONT OFF). The functions of continuous and single sweeps are handled by this command. When the 1NIT:CONT ON command is given, the sweep is continuously re-initiated.
ABORt The ABORt command forces the trigger system to the idle state. Any measurement or output sequence in process is aborted as quickly as possible. ABORt does not alter the settings programmed by other commands, unlike *RST. ABORt is a root level event command and cannot be queried.
Related Documents The International IEEE Standard 488.1-1987, IEEE Standard Digital Interface for Institute of Electrical Programmable Instrumentation. New York, NY, 1987. and Electronics This standard defines the technical details required to design and Engineers.
2 OPERATING AND PROGRAMMING REFERENCE How To Use This Chapter The operating and programming functions of the synthesizer are listed in alphabetical order. Each entry has a complete description, complete programming codes, and a cross reference to the main function group and respective menu map.
Address Function Group Menu Map Description Programming Codes See Also SYSTEM 8 The 8360 Adrs softkey lets you change the HP-IB address of the synthesizer. Enter the address desired using the numeric entry keys or the up/down arrow keys. The address value may be set between 0 and 30.
Programming Codes SCPI: NONE, see the individual softkeys listed. Analyzer: NONE See Also HP-U3 Menu, softkeys listed above. “Optimizing Synthesizer Performance” in Chapter 1.
0 ALC Function Group ALC Menu Map 1 Description This hardkey accesses the automatic level control (ALC) functions. ALC B# Menu Coupling Factor Leveling Mode ALCoff Leveling Mode Normal Leveling Mode Search Leveling Point ExtDet Leveling Point Internal Leveling Point Module Leveling Point PwrMtr Accesses the ALC bandwidth menu.
Par Mtr Range Specifies the operating range of an external power meter used in an external leveling setup. This causes the synthesizer display to agree with the power meter’s power indication. The following paragraphs explain the power control (leveling) function of the synthesizer in detail.
.
Note Two terms are used in the following discussions: power output and ALC level. Power output means actual output power including the effects of the attenuator. ALC level means power levels before the attenuator. In synthesizers without attenuators, these two terms are equivalent.
( POWER LEVEL ), the ALC level and attenuator are set automatically to provide the most accuracy for the power requested. Uncoupled Operation. In some applications it is advantageous to control the ALC level and attenuator separately, using combinations of settings that are not available in coupled operation.
NEOFITIVE DETECTOR Figure A-2. Typical External Leveling Hookup ALC Disabled - Leveling Mode ALCoff , Leveling Mode Search ALC Off. In this configuration, the ALC is disabled, power is not sensed at any point, and therefore the absolute power level is uncalibrated (see Figure A-l).
HP 8360 User’s Handbook 5. Modulation is re-enabled if appropriate. These steps are performed in approximately 200 ps and are repeated any time power or frequency is changed.
ALC Bandwidth Select Auto Function Group ALC Menu Map 1 Description This softkey sets the synthesizer to choose the ALC bandwidth automatically depending on the current sweep and modulation conditions. An asterisk next to the key label indicates that this feature is active.
ALC Bandwidth Select Low Function Group ALC Menu Map 1 Description This softkey sets the synthesizer to the ALC low bandwidth position (10 kHz). In this mode, the ALC bandwidth operates in a narrow bandwidth for all sweep and modulation conditions. An asterisk next to the key label indicates that this feature is active.
ALC BW Menu to remain there for all sweep and modulation conditions. See Also (ALC) “Optimizing Synthesizer Performance” in Chapter 1. Altmate Rep Function Group SYSTEM Menu Map 8 Description This.
AM BW Cal Once Function Group Menu Map Description USER CAL 9 This softkey causes a single AM bandwidth calibration to be performed. Programming Codes SCPI: CALibration:AM:[EXECute] Analyzer: NONE See Also Modulation AM Cal Menu Function Group USER CAL Menu Map 9 Description This softkey accesses the AM bandwidth calibration menu.
AM Menu Function Group (MOD) Menu Map 4 Description This softkey (Option 002 only) accesses the amplitude modulation softkeys. These softkeys engage external and internal amplitude modulation. They allow you to define the scaling, waveform, rate, and depth of the internal AM.
AM On/Off IO dBfV Function Group Menu Map Description Programming Codes See Also MOD (MODULATION) 4 This softkey activates the exponentially-scaled amplitude modulation function. Amplitude modulation lets the RF output of the synthesizer be continuously and exponentially varied at a rate determined by the AM input.
AM On/Off 100%/V Programming Codes SCPI: AM:TYPE LINear AM[:STATE] ON]OFF]l]O Analyzer: AM1 function on, AM0 function off See Also LALC), CONNECTORS, (MOD) “Optimizing Synthesizer Performance” in Chapter 1.
Amp1 Markers AM On/Off In-t Function Group Menu Map Description Programming Codes See Also INIOD) 4 This softkey (Option 002 only) activates the internal amplitude modulation mode.
Amp1 Markers amplitude values. An asterisk next to the key label indicates this feature is active. Programming Codes SCPI: MARKer:AOFF Analyzer: AK1 function on, AK0 function off. See Also (j) “Marker Operation” in Chapter 1. “Setting Up A Typical Sweep, Example Program 2” in Chapter 1.
ANALYZER STATUS REGISTER AM Type 100%/V Function Group Menu Map Description Programming Codes See Also MOD (MODULATION) 4 This softkey (Option 002 only) scales the amplitude modulation function linearly. The amplitude of the RF output changes linearly as a function of AM input changes (or at a rate set by softkey for internal AM) .
ANALYZER STATUS REGISTER STATUS BYTE (#l) Bit # 7 6 5 4 3 2 1 0 Decimal 128 64 32 16 8 4 2 1 Value Function SRQ on new REQUEST SRQ on SRQ on SRQ on SRQ on SRQ on SRQ on frequencies SERVICE HP-IB or End of RF Settled Changed in Numeric Any Front or sweep (RQS) syntax error.
Arrow Keys Bit 2: Oven for the reference crystal oscillator is not at operating temperature. Bit 3: External reference frequency is selected. Bit 4: RF is unlocked (UNLOCK appears in the message line). Use OF to determine the source of the unlocked output.
Arrow Keys Programmin g Codes SCPI: No specific command is available, but the key can be addressed, see SCPI Key Numbers. Analyzer: NONE See Also Fitness Menu, List Menu “Entry Area” and “Creating and Applying the User Flatness Correction Array” in Chapter 1.
Auto Fill Incr Auto Fill Incr Function Group FREQUENCY, POWER Menu Map 2,s Description This softkey is used in two locations: Fitness Menu and List Menu. Flatness Menu - When selected, the synthesizer waits for a frequency increment value to be entered.
Auto Fill #F'ts Function Group FREQUENCY, POWER Menu Map 2,s Description This softkey is used in two locations: Fitness Menu and List Menu. Flatness Menu - When selected, the synthesizer waits for a numeric value representing the number of correction points to be entered.
Auto Fill Stop Auto Fill Start Function Group FREQUENCY, POWER Menu Map 2,s Description This softkey is used in two locations: Fltness Menu and List Menu. The operation is the same in both applications. This softkey enables the entry of a start frequency used to determine the beginning frequency of the automatic filling array.
Au&s Fill Stop where X represents a numeric value. Unless a previous entry was made, the display indicates the synthesizer maximum frequency. Programming Codes SCPI: NONE,see Fltaess Menu or List Menu Analyzer: NONE See Also Fltness Menu, List Menu “Optimizing Synthesizer Performance” in Chapter 1.
B Blank Disp Function Group SYSTEM Menu Map 8 Description When this softkey is selected, it causes the top four lines of the display to blank and remain blank until the [PRESET) key is pressed. Blanking the display prevents sensitive information from being displayed.
C (CENTER) Function Group FREQUENCY Menu Map NONE Description This hardkey lets you select the center frequency for center frequency/frequency span swept operation. When you press [?Ki=i$, the synthesizer displays: --> CENTER: XXXXX MHz. Where XXXXX represents a frequency value.
Center=Narker Function Group MARKER Menu Map 3 Description This softkey sets the center frequency of the sweep to the frequency of the most recently activated marker. Select any marker Ml . . . M5, then select Center=Marker to change the center frequency of the sweep to that of the marker.
Clear Nemorg Clear Memory Function Group SYSTEM Menu Map 8 Description This softkey causes the synthesizer to return to the factory preset instrument state, after writing alternating ones and zeroes over all state information, frequency lists, and save/recall registers a selected number of times.
Clear Point Function Group POWER Menu Map 5 Description This softkey lets you change the correction value for the active frequency point to the “Undefined” state. Programming Codes SCPI: NONE, see Fltness Menu Analyzer: NONE See Also (ALC), Fitness Menu “Optimizing Synthesizer Performance” in Chapter 1.
decreases by 10 dB. For every +lV, increases by 10 dB. So the dynamic range of positive to negative power levels is dependent on the synthesizer power level setting. The input impedance for this input connector is factory set at 500, but can be switched to 2 kfl.
CONNECTORS STOP SWEEP IN/OUT stops a sweep when this input is pulled low. Retrace does not occur, and the sweep resumes when this input is pulled high. The open circuit voltage is TTL high and is internally pulled low when the synthesizer stops its sweep.
HP 8360 User’s Handbook AUXILIARY INTERFACE 13 1 25 14 RS-232 CABLE Figure C-l. Auxiliary Interface Connector Operating and Programming Reference C-7.
Table C-l. Pin Description of the Auxiliary Interface Pin# Function 1 No Connection 2 Z-Axis Blanking/Markers 3 Spare 4 Spare 5 Low Stop Sweep 6 +5.2V 7 No Connection 8 Divider-Sync 9 External Trigger.
CONNECTORS HP-IB connector allows the synthesizer to be connected to any other instrument or device on the interface bus. All HP-IB instruments can be connected with HP-IB cables and adapters.
CONNECTORS operation up 1 km (3,280 ft), and telephone modem operation over any distance. HP Sales and Service offices can provide additional information on the HP-IB extenders. The codes next to the HP-IB connector, illustrated in Figure C-2, describe the HP-IB electrical capabilities of the synthesizer, using IEEE Std.
CONNECTORS MOO Cl +5v RMRVED MOO ANLG GND MOD D 2 MOD CO +RV +15V / RESERVED/fUUP CNTL MOD MO D SENSE MOO bl DIG ;rD MT L’ i (COAX) -i5v Figure C-3.
CONNECTORS RF Output Connector The synthesizer is equipped with a precision 3.5 mm male connector (2.4 mm male connector on 40 GHz models). The output impedance, SWR and other electrical characteristics are listed in “Specifications” .
CorPair Disable Copy List Function Group Menu Map Description Programming Codes See Also POWER 5 This softkey lets you copy the frequency information of the frequency list to the flatness correction menu. If there is no frequency list to copy, nothing happens.
Coupling Factor Function Group Menu Map Description Programming Codes See Also ALC 1 This softkey allows specification of the coupling factor of an external coupler/detector used to externally level the synthesizer output power. Negative coupling factor values are required for valid entry.
CW/CF Coupled CW/CF Coupled Function Group Menu Map Description Programming Codes See Also FREQUENCY 2 This softkey couples the CW function to the center frequency function. Any change initiated in either one of these parameters causes a change in the other.
D Dblr Amp Menu Function Group POWER Menu Map 5 Description This softkey accesses the doubler amp mode softkeys. These softkeys are applicable to instrument models with a doubler installed. The doubler has an integral amplifier whose operation is controlled by the instrument firmware.
Deep AM Function Group MODULATION Menu Map 4 Description This softkey activates distortion reduction mode for deep AM operation. Deep AM automatically switches to the ALC off leveling mode when the modulation level drives the “detector-logger” (part of the RF components, see Figure A-l) below its detection range.
Delete All Programming Codes SCPI: NONE Analyzer: NONE See Also (MOD), also see “Modulation” and “Pulse”. Delete Menu Function Group FREQUENCY, POWER Menu Map 2,5 Description In the menu structure there are two occurrences of this softkey. It leads to the delete choices for both the frequency list menu and the power flatness menu.
Delete All Description Programming Codes See Also In the menu structure there are two occurrences of this softkey. One occurs in the frequency list menu. The other occurs in the power flatness menu. In the both applications, this softkey lets you delete all entries in the array with one keystroke.
Delta Marker Delete Undef Function Group Menu Map Description Programming Codes See Also POWER 5 This softkey occurs in the power flatness menu. It lets you delete only those points that are undefined. Undefined correction values are noted by the display as Undefined.
Delta Marker Programming Codes SCPI: MARKer[n]:DELTa? <num>, <num> Analyzer: MD1 function on, MD0 function off See Also [w) “Marker Operation” in Chapter 1.
Disp Status HP 8360 User’s Handbook Description This softkey causes the status of various features to be displayed. For example, this is what the synthesizer displays as its status after a factory p.
Disp Status Table D-l. Mnemonics used to Indicate Status (continued) Function Mnemonic Flatness On/Off usrcorr Start Sweep Trigger SwpTrig Power Slope Rf Slope Power Sweep Pwr Swp Sweep Mode SwpMode P.
Doubler Amp Mode Off Programming Codes SCPI: POWer:AMPLifier:STATE:AUTO ONlOFF[Oll POWer:AMPLifier:STATE:AUTO? Analyzer: NONE See Also Dblr hp Menu Doubler Amp Mode Off Function Group Menu Map Description Programming Codes See Also HP 8360 User’s Handbook POWER 5 This softkey is applicable to instrument models with a doubler installed.
Doubler Amp Mode On Function Group Menu Map Description Programming Codes See Also POWER 5 This softkey is applicable to instrument models with a doubler installed. The doubler has an integral amplifier whose operation is controlled by the instrument firmware.
E 8360 Adrs Function Group Menu Map Description Programming Codes See Also SYSTEM 8 This softkey lets you change the HP-IB address of the synthesizer. Enter the address desired using the numeric entry keys or the up/down arrow keys. The address value may be set between 0 and 30.
Enter Corr Programming Codes SCPI: NONE, see Fitness Menu Analyzer: NONE See Also Fltneas Menu “Optimizing Synthesizer Performance” in Chapter 1. Enter Freq Function Group POWER Menu Map 5 Description This softkey lets you enter a frequency point into the flatness correction array.
Enter List Freq Description This softkey lets you enter a dwell time for a frequency point in the frequency list array. A frequency point must be entered before a dwell value can be accepted, otherwise the following error message appears: ERROR: Must first enter a List Frequency.
Enter List Offset Function Group FREQUENCY Menu Map 2 Description This softkey lets you enter an offset value for a frequency in the frequency list. A frequency point must be entered before a power value can be accepted, otherwise the following error message appears:.
Ext Det Cal Function Group Menu Map Description Programming Codes See Also ENTRY NONE This softkey lets you turn off (blank) the active entry area and disable the ARROW keys, rotary knob, and entry keys. When any function key (hard or soft) is pressed, the active entry area is reactivated.
Fault Menu Function Group SERVICE Menu Map 6 Description This softkey accesses the fault information softkeys. Use this softkey if a fault is indicated on the message line. Fault Info 1 Indicates the latched status of PEAK, TRACK, RAMP, SPAN, V/GHZ, and ADC.
Analyzer: NONE See Also Softkeys listed above. Function Group SERVICE Menu Map 6 Description This softkey displays the latched status of the following fault messages. PEAK FAIL Indicates that the peak algorithm is unable to align the YTM passband to the frequency of the YO.
Fault Info 2 Programming Codes SCPI:See Fault Menu. Analyzer: NONE See Also Fault Menu Fault Info 2 Function Group SERVICE Menu Map 6 Description This softkey displays the latched status of the following fault messages. EEROM FAIL Indicates that the EEROM (electrically erasable read only memory) has failed to store data properly.
Fault Info 2 Programming Codes SCPI: NONE Analyzer: NONE See Also Fault Menu Fault Info 3 Function Group SERVICE Menu Map 6 Description This softkey displays the latched status of the following fault messages. CALYO FAIL Indicates that the YO adjusted at power-on or at preset is unable to calibrate.
Fltness lbnu Function Group POWER Menu Map 5 Description This softkey reveals the softkeys in the flatness correction menu that control user-define d leveling parameters. Auto Fill Incr Automatically creates a frequency list with all points separated by the specified increment in a given frequency range.
Fitness Menu accessible over HP-IB. To load correction arrays over HP-IB, the correction arrays must be created in the controlling program and then downloaded to the synthesizer. The corresponding SCPI array creation and control commands are given after the description of this feature.
Pltness Menu HP 8360 User’s Handbook Figure F-2. User Flatness Correction Table as Displayed by the Synthesizer Frequency (MH Z ) Correction -> 10.000000 Undefined 110.000000 Undefined 210.000000 Undefined . . . . . . . . . . . . . . . . . . . . Auto Fill .
Fitness Menu Theory of operation The unparalleled leveled output power accuracy and flatness of the HP 8360 series synthesizer. This is achieved by using a new digital (versus analog) design to control the internal automatic leveling circuitry (ALC). An internal detector samples the output power to provide a dc feedback voltage.
Fitness Henu If the correction frequency span is only a subset of the start/stop frequency span set on the source, no corrections are applied to the portion of the sweep that is outside the correction frequency span. The following example illustrates how the data is distributed within the user flatness correction array.
Fitness EIenu Programming Codes SCPI: CORRection:FLATness {<num>[freq suffix],<num>[DB]}2*801 The portion of the above command contained in { } can be entered from one to 801 times. This command creates the frequency-correction pair array similar to the front panel array.
FW Coupling 1OOkHz See Also (ALC, [FLTNESS ON/OFF), List Menu “Optimizing Synthesizer Performance” in Chapter 1. “Programming Typical Measurements” in Chapter 1. [FLTNESS ON/OFF] Function Group Menu Map Description Programming Codes See Also POWER 5 This hardkey applies flatness correction to the synthesizer RF output.
FM Coupling IOOkHz Programming Codes SCPI: FM:FILTer:HPASs <num>[freq suffix](MAXimumJMINimum <num> sets the AC bandwidth to 100 kHz for any value > 1 kHz and sets the AC bandwidth to 20 Hz for any value 5 1 kHz. Analyzer: NONE See Also [MOD], also see “FM” and “Modulation”.
FM Menu Function Group (MOD) Menu Map 4 Description This softkey (Option 002 only) accesses the frequency modulation softkeys. These softkeys engage external and internal frequency modulation. They allow you to define the coupling, waveform, rate, and deviation of the internal FM.
FM On/Off AC Function Group Menu Map Description Programming Codes See Also MODULATION 4 This softkey lets you select AC coupled frequency modulation (FM), and makes FM deviation frequency the active function. FM sensitivity is selectable. Use the rotary knob, up/down, or numeric entry keys to choose, 100 kHz, 1.
FEI b/Off Ext Programming Codes SCPI: FM:SENSitivity <num>[freq/V suffix][MAXimum]MINimum FM:COUPling AC FM:STATe ON]OFF]l(O Analyzer: NONE See Also (MOD),CONNECTORS EN On/Off Ext Function Group &j@ Menu Map 4 Description This softkey (Option 002 only) activates the frequency modulation mode for an external source.
FM On/Off Int Function Group IhnoD] Menu Map 4 Description This softkey (Option 002 only) activates the internal frequency modulation mode. No external source is needed. When internal FM is in effect, the parameters are controlled by the following soft keys: Internal FM Rate Internal FM Deviation FM Coupling IOOkHz FM Coupling DC Waveform Menu.
FREQUENCY [MENU) Programming Codes SCPI: NONE, see softkeys listed above. Analyzer: NONE See Also Softkeys listed above. “Optimizing Synthesizer Performance” in Chapter 1.
FREQUENCY (MENU) Freq Offset List Menu Sets the frequency offset value and applies it to all frequency parameters. Displays the frequency list create/edit softkeys. Step Swp Menu Reveals the stepped frequency sweep edit soft keys. Up/Down Size CW Sets the frequency step size in the CW frequency mode.
Freq Offset The factory preset value is 1. An asterisk next to the key label indicates that this feature is active. Programming Codes SCPI: FREQuency:MULTiplier <num>IMAXimumJMinimum FREQuency:MULTiplier:STATe ONlOFFlllO <num> will be rounded to the nearest integer.
FulliTsr Cal Function Group Menu Map Description Programming Codes See Also USER CAL 9 This softkey initiates a full synthesizer user calibration. The calibration performed is instrument state dependent. For example, if the synthesizer is in ramp sweep mode, a sweep span calibration and an auto track is done.
Global Dwell Function Group Menu Map Description Programming Codes See Also Global Offset Function Group Menu Map Description Programming Codes See Also HP 8360 User’s Handbook FREQUENCY 2 This softkey is used to set a dwell time value for all points in the frequency list array.
H HP-IB Address To set the synthesizer’s HP-IB address, refer to “Address” in this manual. HP-IB Menu Function Group SYSTEM Menu Map 8 Description This softkey reveals the softkeys in the HP-IB control menu. HP 8360 User’s Handbook Adrs Menu Reveals the softkeys that allow HP-IB addresses to be changed.
HP-13 lenu See Also CONNECTORS, HP-IB “Getting Started Programming” H-2 Operating and Programming Reference HP 8360 User’s Handbook.
I Internal AM Depth Function Group Menu Map Description Programming Codes See Also HP 8360 User’s Handbook (MOD) 4 This softkey (Option 002 only) lets you set the AM depth for internally-generated AM. Use the numeric entry keys, arrow keys, or rotary knob to change the value of the depth.
Internal AM Rate Function Group Menu Map Description Programming Codes See Also IIV1OD) 4 This softkey (Option 002 only) lets you set the AM rate for internally-generated AM.
Internal AM Waveform Sine Internal AM Waveform Ramp Function Group IhnoD] Menu Map 4 Description This softkey (Option 002 only) lets you set the AM waveform to ramp for internally-generated AM. An asterisk next to the key label indicates that this feature is active.
Internal AM Waveform Square Function Group Menu Map Description Programming Codes See Also (MOD) 4 This softkey (Option 002 only) lets you set the AM waveform to square wave for internally-generated AM. An asterisk next to the key label indicates that this feature is active.
Internal FM Rate Internal FM Deviation Function Group Menu Map Description Programming Codes See Also 4 This softkey (Option 002 only) lets you set the FM deviation for internally-generated FM. Use the numeric entry keys, arrow keys, or rotary knob to change the value of the deviation.
Internal FM Waveform Noise Function Group Menu Map Description Programming Codes See Also INIOD) 4 This softkey (Option 002 only) lets you set the FM waveform to noise (white noise FM rate; gaussian distribution centered around FM deviation) for internally-generated FM.
Internal FM Waveform Square Internal FM Waveform Sine Function Group Menu Map Description Programming Codes See Also LMOD) 4 This softkey (Option 002 only) lets you set the FM waveform to sine wave for internally-generated FM. An asterisk next to the key label indicates that this feature is active.
Internal FM Waveform Triangle Function Group IhnoD) Menu Map 4 Description This softkey (Option 002 only) lets you set the FM waveform to triangle wave for internally-generated FM. An asterisk next to the key label indicates that this feature is active.
Internal Pulse Generator Period Internal Pulse Mode Gate Turns on the internal pulse mode during the positive cycle of the externally generated pulse. Internal Pulse Mode Trigger Triggers on the leading edge of the external pulse input. Programming Codes SCPI: NONE, see the individual softkeys listed.
Internal Pulse Generator Rate Function Group IMOD) Menu Map 4 Description This softkey (Option 002 only) lets you set a value for the internal pulse generator’s pulse rate. The range of acceptable values is from 2.5 Hz to 3.33 MHz. (These values are obtained by taking the inverse of the period.
Internal Pulse Mode Gate Programming Codes SCPI: PULM:INTernal:WIDTh <num>[time suffix]]MAXimum]MINimum Analyzer: NONE See Also 0, 1 MOD a so see “Pulse” and “Modulation”, Internal Pulse Mode Auto Function Group (MOD) Menu Map 4 Description This softkey (Option 002 only) is the default mode of generating internal pulses.
Internal Pulse Mode Trigger Function Group (MOD) Menu Map 4 Description This softkey (Option 002 only) lets you set the internal pulse generator to trigger on the leading edge of the externally generated pulse. Programming Codes SCPI: PULM:INTernal:TRIGger:SOURce EXTernal Analyzer: NONE See Also (MOD_), also see “Pulse” and “Modulation”.
Leveling Mode ALCof f Function Group ALC Menu Map 1 Description This softkey lets you open the ALC loop. Direct and separate control of the linear modulator circuit (LVL DAC) and attenuator (ATN) is possible (see Figure A-l). The power level must be set using an external indicator (power meter/sensor).
Leveling Mode Normal Function Group ALC Menu Map 1 Description This softkey lets you set the leveling mode of the synthesizer to continuous leveling at the desired leveling point. In this mode, the RF OUTPUT is controlled by the automatic level control (ALC) circuit, otherwise referred to as the leveling loop.
Leveling PointIntrnl Leveling Point ExtDet Function Group Menu Map 1 Description Programming Codes See Also ALC This softkey lets you set the synthesizer to accept an external feedback connection from a negative-output diode detector to level power. The EXT ALC BNC is the input connection for the required signal.
Leveling Point Module Function Group Menu Map Description Programming Codes See Also ALC 1 This softkey lets you set the synthesizer to level at the output of an HP 8355X series millimeter-wave source module. All models of the HP 8360 series synthesized sweepers drive mm-wave source modules.
List Menu LINE SWITCH Function Group Menu Map Description Programming Codes See Also HP 8360 User’s Handbook NONE NONE The line switch (on/off switch) has two positions, off or standby and on. If line power is connected to the synthesizer and the line switch is set to off, the synthesizer is in the standby state (amber LED on).
List Menu Enter List Power Allows the entry of an ALC output power correction value for a frequency in the frequency list. Global Duel1 Automatically sets the dwell time for all points in the frequency list to a user-specified value.
List Menu To remove a frequency point and its associated offset value and dwell time, use the delete menu (Delete current ) softkey. To remove an entire frequency list, use the delete me !nu, (Delete All ) softkey. Editing ALC Offset and Dwell Time Once a frequency point has been entered, You can assign an ALC offset and a dwell time value.
List Mode Pt Trig Auto Function Group FREQUENCY Menu Map 2 Description This softkey lets you set the synthesizer to automatically step through a frequency list, when the synthesizer is in sweep list mode.
List Mode Pt Trig Ext Function Group Menu Map Description Programming Codes See Also FREQUENCY 2 This softkey lets you set the trigger point to be an external hardware trigger. When the synthesizer receives an external hardware trigger, it steps to the next frequency point of the frequency list, provided the synthesizer is in sweep list mode.
M Ml--M2 Sweep Function Group MARKER Menu Map 3 Description This softkey lets you set the synthesizer to start sweeping at the frequency of marker 1 (Ml), and stop sweeping at the frequency of marker 2 (M2). M2 must have a higher frequency value than Ml.
kimaL Suesp the @ and (%J keys. Frequencies in the manual sweep mode are synthesized, just as they are in CW mode. There are two major differences between manual sweep and a sweep generated by activating the CW function and rotating the rotary knob or pressing the ARROW keys.
Function Group MENU SELECT Menu Map 3 Description This hardkey allows access to the marker functions. Amp1 Markers Causes the synthesizer to display markers as an amplitude pulse. Center=Marker Delta Marker Delta Mkr Ref Changes the synthesizer’s center frequency to the value of the most recently activated marker.
Marker Ml Function Group MARKER Menu Map 3 Description The softkeyslabeled Marker Ml through Marker M5 function identically. The softkey turns the marker off/on. When an asterisk appears next to the key label, it indicates that the marker is on, but not necessarily active.
Narker W3 Marker M2 Function Group Menu Map Description Programming Codes See Also MARKER 3 See MARKER Ml SCPI: MARKer2[:FRE Q uency] <num>[freq suffix] or MAXimumI MINimum MARKer2:STATe ONlOFFjllO Analyzer: M2 function on, MO function off. Amp1 Markers, Ml--M2 Sweep , [m), MkrRef Menu , Start=Ml Stop=M2 “Marker Operation,” in Chapter 1.
Marker M4 Function Group Menu Map Description Programming Codes See Also MARKER 3 See MllRKER Ml SCPI: MARKer4[:FRE Q uency] <num>[freq suffix] or MAXimum I MINimum MARKer4:STATe ONlOFFlllO Analyzer: M4 function on, MO function off. An@ Markers,(MARKER), MkrRef Menu “Marker Operation,” in Chapter 1.
Measure Cm-r 811 Markers All Off Function Group Menu Map Description Programming Codes See Also MARKER 3 This softkey lets you turn all the markers off. The frequency value given to the markers remains in memory and will be recalled when the marker softkeys are pressed again.
Measure Corr Current Function Group Menu Map Description Programming Codes See Also POWER r 3 This softkey lets you enable the synthesizer to act as a controller to command an HP 437B power meter to measure a single flatness correction value at the current flatness array frequency.
Meter Adrs Function Group SYSTEM Menu Map 8 Description In cases where the synthesizer is capable of acting as a controller to an HP 437B power meter, this softkey enables you to set the programming address of the power meter. The address value can be set from 0 to 30, with the factory default address set at 13.
Meter On/Off FM Function Group (MOD) Menu Map 4 Description This softkey (Option 002 only) lets you display the frequency deviation produced by the externally-generated frequency modulation. Programming Codes See Also SCPI: MEASure:FM? Analyzer: NONE (MOD), also see “FM” and “Modulation”.
NodOut On/Off AM Pulse Pulse modulation is accepted from an external source at the PULSE connector. In addition, pulse modulation can also be internally generated. The pulse is adjustable in standard synthesizers with 1.0 ps resolution. Synthesizers can also produce a 27.
ModOut On/Off FM Function Group Menu Map Description Programming Codes See Also (MOD) 4 This softkey (Option 002 only) lets you output the internally- generated frequency modulation waveforms to the rear panel AM/FM OUTPUT connector.
HP 8360 User’s Handbook FEEDFORWARD Figure M-l. ALC Block Diagram Operating and Programming Reference M-13.
Amplitude Modulation Amplitude modulation can be accepted from an external source at the AM connector or can be internally generated by synthesizers with Option 002. The damage level of the AM input is f15 V DC. The input impedance of the AM connector is 500.
Amplitude Modulation Uncoupled mode can also be used for the following: n To increase the available AM depth if you are modulating near the minimum power range of the ALC loop. n To offset the power sweep range. n To reduce AM noise by operating at a higher ALC level.
Amplitude Modulation ALC loop open, the minimum level is limited by the modulator’s range to approximately -50 dBm. p out I Maximum Swcified Power _____-_--_--_--_--_ ------ Deep PM On With AM BW Cal Deep M( On Without AM BW Cal Deep AM Off Figure M-2.
FM Modulation FM Modulation Frequency modulation can be accepted from an external source at the FM connector or can be internally generated by synthesizers with Option 002. The damage level of the FM input is 4~15 V DC. The input impedance is set to 50R.
FM Modulation The FM rate can be decreased as long as the FM deviation remains less than n x 5 x FM rate and less than 8 MHz. I I I I Figure M-3. FM Deviation and Rate Limits If the FM deviation is set greater than the 8 MHz limit, it must be decreased for specified performance.
Pulse Modulation Pulse Modulation Pulse modulation can be accepted from an external source at the PULSE connector or can be internally generated. The damage levels of the PULSE input are +lO and -5 V DC. The input impedance is 50R. A function generator must be capable of driving TTL levels into a 5Ofl load.
Pulse Modulation Figure M-4. ALC Block Diagram (B) PULSE WAVEFORMS 0 1 PULSE INPUT 0 2 RF I THIS PEDESTAL REPRESENTS THE RF AMPLITUDE 0 3 LOG AMP OUTPUT 0 4 S/H CONTROL Figure M-5.
Pulse Modulation Leveling Narrow Pulses For narrow pulses of less than 1 /JS width, either use search leveling mode or use unleveled operation. (If you do not, you will see the output level continue to rise as the synthesizer tries to correct for the off portion of the cycle.
Pulse Modulation Video Feedt hrough Video feedthrough is a video signal at the modulation rate that is superimposed on the RF envelope (see Figure M-6). If large enough, video feedthrough can disturb mixer balance, amplifier bias, crystal detector output, etc.
Module Menu Function Group (ALC) Menu Map 1 Description This softkey accesses the source module selection softkeys. Millimeter-wave source modules can be connected to the synthesizer source module interface connectors (there is one each on the front and rear panels).
Module Select AUTO Function Group POWER and FREQUENCY Menu Map 2 and 5 Description This command sets the automatic selection of the millimeter source module interface connector. The synthesizer looks at both front and rear connectors and determines the type of source module (if any) connected.
Ffodule S818Ct Bon% Programming Codes SCPI: SYSTem:MMHead:SELect FRONtlREARlNONE SYSTem:MMHead:SELect? Analyzer: NONE See Also Module Menu Module Select None Function Group Menu Map Description Programming Codes See Also HP 8360 User’s Handbook POWER and FREQUENCY 2 and 5 This command disables millimeter source module sensing.
Mudule Select Rear Function Group POWER and FREQUENCY Menu Map 2 and 5 Description This command causes the synthesizer to examine only the rear panel source module interface connector to determine the type of source module (if any) connected. The instrument frequency limits and multiplier are altered according to the source module connected.
more n/m Meter On/tiff FM Displays the FM deviation of the modulating signal. Programming Codes SCPI: NONE, see the individual softkeys listed. Analyzer: NONE See Also (MOD), also see “Modulation”.
Mtr Meas Menu Function Group POWER Menu Map 5 Description This softkey accesses the meter measure softkeys. Meas Corr All Measures flatness correction values for all frequency points in the flatness correction array.
P Peak RF Always Function Group POWER, USER CAL Menu Map 5,9 Description This softkey appears in two locations: the POWER Tracking Nenu and the USER CAL Tracking Menu.
Peak RF Once Function Group POWER, USER CAL Menu Map 5,9 Description This softkey appears in two locations: the POWER Tracking Menu and the USER CAL Tracking !lenu . The operation is the same in both locations. This softkey causes an instantaneous, one-time execution of the peaking function when the synthesizer is in the CW or manual sweep mode.
(POWER LEVEL ) Power(dBm) INT : x.xx. In Normal, Uncoupled Attenuator, the ( POWER LEVEL ) key controls the Level DAC and Level Control Circuits (see Figure A-l) within the ALC level range (+25 to -20 dBm). The attenuator is uncoupled from the ALC system and is controlled separately with the Set Atten key.
[POWER LEVEL) MTR: x.xx . In Normal, Module, the ( POWER LEVEL ) key controls the output power of the synthesizer as compared to the feedback voltage from a millimeter-wave source module.
POWER (iZiG) Function Group POWER Menu Map 5 Description This hardkey accesses the power function softkeys. F’ltness Menu Accesses the softkeys in the flatness correction menu. Power Offset Changes the displayed power to include an offset, but does not change the output power of the synthesizer.
Power Offset Function Group POWER Menu Map 5 Description This softkey changes the mapping of absolute power parameters on input to the synthesizer. It does not change the RF output produced by the synthesizer. The equation used to determine the displayed value is: Entered or Displayed Power = Hardware Power (ALC) + Active Offset.
Power Sweep in dB/Hz, and t is either “DB” or the ASCII LF terminator. For example, for a slope of 1.5 dB/GHz use this procedure: 1. 1.5 dB/GHz = 1.5 dB/1,000,000,000 Hz 2. 1.5 dB/lES Hz = 1.5E-9 dB/Hz 3. The programming code is “SL11.5E-9 DB” See Also CPOWER LEVEL ), Power Sweep “Power Sweep and Power Slope Operation” in Chapter 1.
Function Group Menu Map Description Programming Codes See Also INSTRUMENT STATE NONE This hardkey (green) causes the synthesizer to perform a short version of self-test, and initializes the synthesizer to a standard starting configuration. Two states can be defined for the standard configuration: Factory or User.
Preset'lfade Factory Preset Mode Factory Function Group Menu Map Description Programming Codes See Also SYSTEM 8 This softkey sets the standard starting configuration of the synthesizer when the (PRESET) key is pressed, as set by the manufacturer.
Preset Mode User Function Group SYSTEM Menu Map 8 Description This softkey sets the standard starting configuration of the synthesizer when the (PRESET) key is pressed, as set by the user. You can define any starting conditions: Set up the synthesizer with the conditions you want, then select Preset Mode User .
Function Group MENU SELECT Menu Map NONE Description This hardkey lets you view previous menus. All menus visited from the last preset are remembered and displayed in a “last-visited-first-seen” order. Refer to Figure P-l, and follow the arrow paths as indicated.
Programming Codes SCPI: NONE Analyzer: NONE See Also more n/m Programming Language Analyzr Function Group Menu Map Description Programming Codes See Also SYSTEM 8 This softkey lets you select Analyzer Language as the synthesizer’s interface language.
Programming Language SCPI Programming Codes SCPI: SYSTem:LANGuage CIIL Analyzer: CIIL See Also Adrs Menu The M.A.T.E. option (Option 700) is documented in a separate manual supplement called, HP 8360 Series Synthesized Sweepers Option 700 Manual Supplement.
Pt Trig Penn Function Group FREQUENCY Menu Map 2 Description This softkey accesses the list mode point trigger softkeys. List Mcrde Pt Trig Auto Automatically steps the synthesizer to next point in the frequency list. List Mode Pt Trig Bus Steps the synthesizer to the next point in the frequency list when an HP-IB trigger is received.
Pulse Delay TrigId Programming Codes SCPI: PULM:INTernal:DELay <num>[time suffix]]MAXimum]MINimum Analyzer: NONE See Also 0, 1 MOD a so see “Pulse” and “Modulation”.
Pulse Menu Function Group (MOD) Menu Map 4 Description This description is for the Pulse Menu softkey for synthesizers without Option 002. For the Option 002 Pulse Menu softkey go to the “Pulse Menu” heading that follows this one. This softkey reveals the pulse parameter softkeys.
Menu Map 4 Description This description is for the Pulse Menu softkey for synthesizers with Option 002. For the standard 002 Pulse Menu softkey go to the “Pulse Menu” heading that precedes this one. This softkey accesses the pulse modulation softkeys.
Pulse h/Off Extrnl Function Group Menu Map Description Programming Codes See Also Pulse On/Off Intrnl Function Group Menu Map Description LMOD) 4 This softkey activates the pulse modulation mode for an external pulse source. The pulse source is connected to the PULSE INPUT BNC connector and fed to the pulse modulator through a buffer circuit.
Pulse On/OffScalar Programming Codes SCPI: PULSe:SOURce INTernal PULSe[:STATe] ON]OFF]l]O Analyzer: NONE See Also IALC),m, Pulse Menu Pulse On/Off Scalar Function Group Menu Map Description Programming Codes See Also (MOD) 4 This softkey activates pulse modulation mode, and sets the internal pulse generator to produce 27.
Pulse Period Function Group Menu Map Description Programming Codes See Also (MOD) 4 This softkey lets you set a value for the internal pulse generator’s pulse period. The range of acceptable values is from 2 pus to 65.5 ms. The factory preset value is 2 ms.
Pulse Rise TimeFast Pulse Rise Time klto Function Group Menu Map Description Programming Codes See Also MODULATION 4 This softkey lets you set the pulse rise time to depend on the state of the synthesizer pulse scalar function. If pulse scalar is on, rise time is set to slow.
Pulse Rise Time SlQW Function Group Menu Map Description Programming Codes See Also MODULATION 4 This softkey lets you set the synthesizer to apply a slow rise pulse filter to both internal and external pulse waveforms. This results in pulses having approximately 2 ps rise/fall times.
Pm E&r Range Pwr Mtr Range Function Group IALC) Menu Map 1 Description This softkey lets you specify a range of operation (from +20 to -60 dBm) for an external power meter, when a power meter is used to level power externally. The factory preset value is 0 dBm.
R Function Group Menu Map Description Programming Codes See Also SYSTEM 8 This hardkey retrieves a front panel setting that was previously stored in a SAVE register (1 through 8). SCPI: *RCL <num> The above is an IEEE 488.2 common command. Analyzer: RCn, where n= a numeric value from 0 to 9.
Ref Osc Hem 10 MHz Freq Standard None Sets the synthesizer to free-run operation, where no frequency standard is used. Programming Codes SCPI: ROSCillator:SOURce INTernallEXTernallNONe Analyzer: NONE See Also Softkeys listed above.
S Function Group Menu Map Description Programming Codes See Also HP 8360 User’s Handbook SYSTEM 8 This hardkey allows up to eight different front panel settings to be stored in memory registers 1 through 8. Synthesizer settings can then be recalled with the [RECALL) key.
Save Lock Function Group SYSTEM Menu Map 8 Description This softkey lets you disable the save function. It prohibits the saving of the present instrument state into a save/recall memory register. If this function is active, an error message is displayed.
SCPI Conformance Information SCPI Conformance Information The HP 8360 series synthesized sweepers conform to the 1990.0 version of SCPI. The following are the SCPI confirmed commands implemented by th.
SCPI Conformance Information :SPAN? :STARt :STARt? :STOP :STOP? n :LIST :DWELl :POINts? :DWELl? :FREQuency :POINts? :FREQuency? n :MARKer[n] :AOFF :FREQuency :FREQuency? :REFerence :REFerence? [:STATe.
SCPI Conformance Information :STATe :STATe? n :PULSe :PERiod :PERiod? :WIDTh :WIDTh? n :ROSCillator :SOURce :AUTO :AUTO? :SOURce? n :STATus :OPERation :CONDition? :ENABle :ENABle? [:EVENt]? :NTRansiti.
SCPI Conformance Information :TIME? w :SYSTem :ALTernate :STATe : STATe? :ALTernate? :COMMunicate :GPIB :ADDRess :SECurity [:STATe] [:STATe]? :VERSion? n :TRIGger [:IMMediate] :SOURce :SOURce? The fol.
SCPI Conformance Information :IF :SAMP :YO :OUTPut :BANDcross? :FAULts? :FREQs? :UNLocks? :YODacs? :YTMDacs :SRECeiver :ASTate :ASTate? :BCRoss :MODE :MODE? :RSWeep :SWAP :SWAP? :BUCKet :DIVider :DIVi.
SCPI Conformance Information :DELete :POINts? :RESult? :TINT? The following are the commands implemented by the HP 8360 series synthesized sweepers which are not part of the SCPI definition: n :AM :IN.
SCPI Conformance Information :INITiate? :NEXT? :RANGe :RANGe? :POWer :ARRay :POINts? :ARRay? :ATTenuation :ATTenuation? :EXTernal :ARRay :POINts? :ARRay? :RANGe :RANGe? :TYPE ’ :TYPE? :VALue :VALue?.
SCPI Conformance Information [:DEViation] [:DEViation]? :FILTer :HPASs :HPASs? :INTernal :FUNCtion :FUNCtion? n :FREQuency :MULTiplier :STATe :STATe? :MULTiplier? :OFFSet :STATe :STATe? :OFFSet? :STEP.
SCPI Conformance Information :PERiod :PERiod? :TRIGger :SOURce :SOURce? :WIDTh :WIDTh? :SLEW :SLEW? :AUTO :AUTO? w :STATus :MSIB :CONDition? :ENABle :ENABle? [:EVENt]? :NTRansition :NTRansition? :PTRa.
SCPI Conformance Information :ERRor? :KEY :ASSign :CLEar [:CODE] [:CODE]? :DISable :ENABle :LANGuage :MMHead :SELect :AUTO :AUTO? :SELect? :PRESet [:EXECute] :SAVE :TYPE :SECurity :COUnt :COUnt? n :TR.
SCPI COMMAND SUMMARY Introduction This entry is organized as follows: 1. IEEE 488.2 common commands in alphabetical order. 2. Command table of SCPI programming commands.
SCPI COMMAND SUMMARY a *OPT? This returns a string identifying any device options. 0 *RCL <num> The instrument state is recalled from the specified memory register.
SCPI COMMAND SUMMARY 1NITiate:CONTinuous OFF LIST:DWELlvalueis 100 /JS (MINimum) LIST:DWELl:POINts? returns al LIST:FREquencyvalueis (MAX+MIN)/2 LIST:FREQuency:POINts? returns a 1 LIST:MANual 1 LIST:M.
SWEep : STEP value is (StopMAX-StartMIN) /lO SWEep:TIMEMINimum SWEep:TIME:AUTO ON SWEep:TIME:LLIMit 10ms SWEep : GENerat ion ANALog SWEep : MODE AUTO SWEep : MANual : POINt 1 SWEep:MANual[:RELative] 0.
SCPI COMMAND SUMMARY sending the command: TSW;*WAI allows for synchronous sweep operation. It causes the synthesizer to start a sweep and wait until the sweep is completed before executing the next command.
SCPI COMMAND SUMMARY Table S-l. HP 8360 SCPI COMMAND SUMMARY 1 Parameter types are explained in the “Getting Started Programming~’ chapter. HP 8360 User’s Handbook Command ABORt AM [:DEPth] INTe.
.
SCPI COMMAND SUMMARY Table S-l. HP 8360 SCPI COMMAND SUMMARY (continued) Command DIAGnostics [:EXECute] :LOG Parameters Parameter Type1 Allowed Values extended numeric 0 to 288 :SOURce llog when [:STA.
Table S-l. HP 8360 SCPI COMMAND SUMMARY (continued) Command FREQuency :MODE :MULTiplier :STATe :OFFSet :STATe :SPAN :STARt :STEP Parameters free mode freq mult state freq offset state freq span start freq Parameter Type1 Allowed Values discrete CWlSWEeplLIST extended numeric +36 to -36 or MAXimum(MINimum Boolean ON(OFF(l(0 extended numeric +99.
Table S-l. HP 8360 SCPl COMMAND SUMMARY (continued) Command Parameters Parameter Type1 Allowed Values [n] is 1 to 5, 1 is the default MARKer[n] :AMPLitude [:STATe] state Boolean ON/OFF]1 10 :VALue amp.
SCPI COMMAND SUMMARY Table S-l. HP 8360 SCPI COMMAND SUMMARY (continued) Command POWer Parameters Parameter Type1 Allowed Values :MODE :OFFSet :STATe :RANGe :SEARch :SLOPe :STATe :SPAN :STARt :STATe :.
Table S-l. HP 8360 SCPI COMMAND SUMMARY (continued) Command Parameters Parameter Type1 Allowed Values PULM :PERiod intnl pulse period extended numeric <num>[time suffix] or MAXimumlMINimum :TRIG.
Table S-l. HP 8360 SCPI COMMAND SUMMARY (continued) Command IEep CONTrol Parameters Parameter Type1 Allowed Values :STATe dual source mode ON]OFF]l]O :TYPE ,DWELl :AUTO type of sweep control settling time plus dwell time dwell calculation state Boolean discrete extended numeric Boolean MASTerlSLAVe 0.
Table S-l. HP 8360 SCPI COMMAND SUMMARY (continued) Command Parameters Parameter Type1 Allowed Values SYSTem :ALTernate save/recall numeric 1 to S]MAXimum]MINimum register :STATe state Boolean ON]OFF].
l ABORt Causes the sweep in progress to abort and reset. If INIT: CONT is ON it immediately restarts the sweep. The pending operation flag (driving *OPC, *WAI, and *OPC?) undergoes a transition once the sweep is reset.
SCPI COMMAND SUMMARY If this is ON, each time a frequency or power is changed, CALibration:AM[:EXECutel is attempted. l CALibration:AM[:EXECutel When AM is on and the synthesizer is in the CW or manual mode, the synthesizer performs a modulator calibration as long as power sweep is not active.
DIODe PMETer MMHead Initiates a calibration of the external flatness. Depends on value of CALibrat ion: PMETer : RANGe. Initiates a calibration of the power meter flatness. Depends on value of CALibrat ion : PMETer : RANGe. Initiates a calibration of the source module flatness.
Sets and queries an array of up to 801 frequency-correction pairs. This correction information is used to create a correction array that can be added to the internal calibration array. The correction entered is at the associated frequency. Frequencies in between frequency-correction pair values are determined by linear interpolation.
l DIAGnostics:INSTrument:PRINter:ADDRess <num> l DIAGnostics:INSTrument:PRINter:ADDRess? Sets the HP-IB address of the printer to use during some of the calibration procedures when the synthesizer assumes HP-IB control. *RST and power on do not effect this command.
HP 8360 User’s Handbook <manual entry point> a string response that identifies the paragraph number in the HP 8360 Assembly-Level Repair Manual to begin the troubleshooting procedure. l DIAGnostics:TEST:CONTinue Causes the selftest execution to continue when paused for raw data examination.
l DIAGnostics:TEST:LOG[:STATe]? l DIAGnostics:TEST:LOG[:STATe] ON|OFF|l|O Selects and queries the raw data logging ON/OFF switch. Both commands are executable in selftest mode. After *RST, the setting is 0. l DIAGnostics:TEST:LOOP ON|OFF|l|O l DIAGnostics:TEST:LOOP? Selects and queries the test looping ON/OFF switch.
SCPI COMMAND SUMMARY positions to the bandwidth, < 20 Hz and > 100 kHz, but any numeric is accepted. The value is compared to 1 kHz and the correct position is determined (> 1 kHz sets the position to 100 kHz and 5 1 kHz sets the position to 20 Hz).
SCPI COMMAND SUMMARY The synthesizer use s “bumping” to move unspecified frequency parameters, but if the final value of any of the frequency headers is the result of bumping, then an error is generated since the user is not getting what was specified.
Sets and queries the manual frequency. This controls the output frequency in swept manual mode. The limits are START and STOP. *RST value is the same as FREQ : CENTER. See FREQ : CENTER for more information. l FREQuency:MODE FIXediCWlSWEeplLIST l FREQuency:MODE? Sets and queries the switch that selects either swept, CW or list operation.
.
SCPI COMMAND SUMMARY before changing to the next frequency. After *RST, the value is 100 PUS ( MIN ). l LIST:DWELl:POINts? [MAXimumlMINimum] Returns the number of dwells entered using the LIST:DWELl command.
*RST state is AUTO. l LIST[:POWer]:CORRection (<num>[DB]IMAXimumlMINimum~l*801 l LISTC:POWer]:CORRection? Sets and queries the list of correction levels that correspond to each of the frequencies entered using the LIST:FREQ command. The attenuator is not allowed to change during the list execution.
SCPI COMMAND SUMMARY MARKer[n]:MODE How the frequency of the marker is determined. FREQuency Absolute frequency is used. The limits are confined to the present START and STOP frequency limits. DELTa The value is specified with respect to the reference marker.
l MODulat ion : STATe? Queries the status of any modulation. If any of the modulation states are on, then it returns a 1, otherwise it returns a 0. Power Subsystem Any place where dBm is accepted as a suffix, any level suffix is accepted also. In the absence of a suffix, the units are assumed to be as set by the UNIT :POW command.
Programming a specific value for POWer : AMPLif ier : STATE sets POWer:AMPLifier:STATE:AUTOto OFF. l POWer:AMPLifier:STATE:AUTO ONlOFFlOll l POWer:AMPLifier:STATE:AUTO? Sets and queries the automatic selection of the doubler amplifier state. Programming a specific value for POWer : AMPLif ier : STATE sets POWer:AMPLifier:STATE:AUTO to OFF.
SCPI COMMAND SUMMARY the sweep mode then the output level is controlled by the start, stop, center and span functions. If in the fixed power mode then the output is controlled by the POW C: LEVEL1 command.
SCPI COMMAND SUMMARY FREQ:MODE Affect on Slope CW or LIST Rotates around 0 Hz. SWEep or Rotates around the start frequency. STEP The *RST value is 0. l POWer:SLOPe:STATe ON|OFF|l|O l POWer:SLOPe:STATe? Sets and queries the power slope state. *RST value is 0.
SCPI COMMAND SUMMARY analogous to those for frequency sweep. Power sweep is allowed to be negative, unlike frequency sweeps. “RST value is 0 dBm. l PULM:EXTernal:DELay <num>[time suffix] IMAXi.
SCPI COMMAND SUMMARY Pulse Subsystem Since frequency and period are inversely related, if both are sent in the same message, only the last one is applied. If the WIDth command and either the FREQuency or PERiod command are sent in the same message, they must be accepted without error if the resulting pulse is possible.
command to set the switch will cause ROSC:SOUR:AUTO OFF to be done also. The *RST value is automatically determined. l ROSCillator:SOURce:AUTO ONlOFFlllO a ROSCillator:SOURce:AUTO? Sets and queries the automatic reference selection switch. The *RST value is 1.
l STATus:QUEStionable[:EVENt]? Queries the Data Questionable Event Register. This is a destructive read. l STATus:QUEStionable:NTRansition <num> l STATus:QUJZStionable:NTRansition? Sets and queries the Negative TRansition Filter for the Data Questionable Status Register.
l SWEep:DWELl <num>[time suffix] lMAXimumlMINimum l SWEep:DWELl? CMAXimumIMINimum] Sets and queries the amount of time in seconds that the synthesizer stays (dwell) at each step after reporting a source settled SRQ and pulsing the Trigger Out line low.
HP 8360 User’s Handbook SCPI COMMAND SUMMARY l SWEep:MANual:POINt <num>lMAXimumlMINimum l SWEep:MANual:POINt? [MAXimumlMINimum] Sets and queries the step point number to go to and lock. The value is a unitless value that is limited between 1 and the number of points requested.
If you change step size then the number of points will be changed to span/step and a Parameter Bumped execution error is reported. If span or points are changed then STEP= SPAN/POINTS.
SCPI COMMAND SUMMARY HP 8360 User’s Handbook Sets and queries the save/recall register number to alternate the foreground state of the instrument. The *RST value is 1. l SYSTem:ALTernate:STATe ONlOFFlllO l SYSTem:ALTernate:STATe? Sets and queries the state of the Alternate State function.
.
SCPI COMMAND SUMMARY HP 8360 User’s Handbook is not affected by *RST. When you change the value from ON to OFF, everything except calibration data is initialized or destroyed. In particular, data in instrument state and all save/recall registers are destroyed.
SCPI STATUS REGISTER STRUCTURE STANDARD EVENT STATUS GROUP ENABLE REGISTER *ESE <““ml> * ESE? 2 I SERVICE REQUEST ENABLE REGISTER ; ;;E? <““ml> S-56 Operating and Programming Refer.
SCPI STATUS REGISTER STRUCTURE STA N DARD OPERATION STATUS GRO U P NEGAT,“E TRANSITION FILTER STAT:OPER.Nrn <““rn> STAT:OPER:NTRR? POSKb’E TRANSlTiON FILTER STAT OPEWTR <““ml> STAT”o.OPERotio”:Pt,onsition? ENABLE REGISTER STAT OPER+NAB <“urn> STAT”r.
Security Menu Function Group SYSTEM Menu Map 8 Description This softkey accesses the security function softkeys. Blanlr Display Turns off the synthesizer’s data display, active entry, and message line areas.
Set Atten Selftest (Full) Function Group SERVICE Menu Map 6 Description This softkey activates the self-test function of the synthesizer. Programming Codes SCPI: *TST? Analyzer: NONE See Also Fault Menu, SCPI COMMAND SUMMARY “OPERATOR’S CHECK and ROUTINE MAINTENANCE,” Chapter 4.
SINGLE Function Group Menu Map Description Programming Codes See Also SWEEP 7 This hardkey selects single sweep mode, aborts any sweep in progress and initiates a single sweep at a rate determined by the sweep time function.
(SPAN) Function Group Menu Map Description Programming Codes See Also FREQUENCY 2 This softkey lets you set a value for the frequency span in the center frequency/frequency span mode of swept frequency operation. Press w) , and use the entry area to enter the desired value.
.
Start Sweep Trigger Bus Start Sweep Trigger Auto Function Group Menu Map Description Programming Codes See Also Start Sweep Trigger Bus Function Group Menu Map Description Programming Codes See Also SWEEP 7 When this softkey is selected, the synthesizer automatically triggers a sweep.
Start Sweep Trigger Ext Function Group Menu Map Description Programming Codes See Also SWEEP 7 When this softkey is selected, the synthesizer waits for an external hardware trigger to trigger a sweep. Connect the trigger pulse to TRIGGER INPUT. It is activated on a TTL rising edge.
Step Control Master SCRLAR NRSTER SLRVE NETUORK RNRLYZER SYNTHESIZER SYNTHESIZER Figure S-l. Connections Required for a Two-Tone Scalar Network Analyzer Measurement System 1. Designate one synthesizer as the master, the other as the slave. 2. Make the connections.
Step Control Slave Function Group FREQUENCY Menu Map 2 Description This softkey lets you designate the synthesizer as the slave in a dual synthesizer measurement system. A dual synthesizer system (two-tone measurement system) facilitates accurate device characterizations by providing one timebase reference for both sources.
Step Points Programming Codes SCPI: SWEep:CONTrol:STATe ON]OFF]l]O SWEep:CONTrol:TYPE SLAVe Analyzer: NONE See Also Step Control Master, Step Swp Menu Step Dwell Function Group FREQUENCY Menu Map 2 Description This softkey lets you set dwell times for points in the stepped frequency mode of sweep operation.
SZ;ep Points Menu Map Description Programming Codes See Also 2 This softkey lets you define the number of step points in a stepped frequency sweep. The number of points in a stepped sweep can range from 2 to 801. Step Size and Step Points are dependent variables.
Step Swp Menu Step Swp Menu Function Group FREQUENCY Menu Map 2 Description This softkey reveals the stepped Dwell Coupled Step Control Master Step Control Slave Step Dwell Step Points Step Size Step Swp Pt Trig Auto Step Swp Pt Trig Bus Step Swp Pt Trig Ext frequency sweep entry menu.
Step Swp Pt Trig Auto Function Group Menu Map Description Programming Codes See Also st;ep Swp Pt Trig Bus Function Group Menu Map Description Programming Codes See Also FREQUENCY 2 When this softkey is selected, the synthesizer automatically steps to the next point in the stepped frequency sweep until all points are swept.
Step Swp Pt Trig Ext Function Group Menu Map Description Programming Codes See Also FREQUENCY 2 When this softkey is selected, the synthesizer steps to the next point in the stepped frequency sweep when an external hardware trigger is received.
See Also (CENTER), (cw), FREQUENCY (MENU), (ml, (K) “CW Operation Start/Stop Frequency Sweep,” in Chapter 1. “Programming Typical Measurements,” in Chapter 1. SWEEP @ii-) Function Group SWEEP Menu Map 7 Description This hardkey accesses the sweep menu softkeys.
Sweep Mode Ramp Programming Codes SCPI: NONE Analyzer: NONE See Also Softkeys listed above. “Programming Typical Measurements,” in Chapter 1. Sweep Mode List Function Group Menu Map Description Programming Codes See Also SWEEP 7 This softkey activates the step frequency list mode.
Sweep Mode Itamp Programming Codes SCPI: FREQuency:MODE SWEep SWEep[:FRE Q uency]:GENeration ANALog Analyzer: NONE See Also CONNECTORS, [CONT), Manual Sweep,(SINGLE), “Programming Typical Measurements,” in Chapter 1.
Sup Span CalOnce Swp Span Cal Always Function Group USER CAL Menu Map 9 Description This softkey causes a sweep span calibration each time the frequency span is changed.
(SWEEP] Function Group SWEEP Menu Map 7 Description This softkey lets you set a sweep time for frequency sweeps or power sweeps. The sweep time range is 10 ms to 2OOs, but the fastest sweep time is constrained by the frequency span. The fastest possible sweep can be determined automatically: 1.
Description This softkey lets you set the synthesizer’s sweep time to a minimum value for a chosen span and meet all specifications. The sweep time is limited by a 300 MHz/ms sweep rate. An asterisk next to the key label indicates this feature is active.
SYSTEM [MENU) UsrKey Clear Activates the USER-DEFINED (MENU) and lets you delete a single key within that menu. UsrMenu Clear Activates the USER-DEFINED [j) and clears all keys in that menu.
10 MHz Freq Std Auto Function Group Menu Map Description Programming Codes See Also SYSTEM 8 This softkey sets the synthesizer to choose its frequency standard automatically. If an external standard is connected to the 10 MHz REF INPUT BNC, then it is chosen as the reference.
10 l4EIz Freq Std Extrnl Programming Codes SCPI: ROSCillator[:SOURce] EXTernal Analyzer: NONE See Also Ref Osc Menu 10 MHz Freq Std Intrnl Function Group SYSTEM Menu Map 8 Description This softkey sets the synthesizer to select the internal 10 MHz signal as the frequency reference.
TrigOut Delay Tracking Menu Function Group Menu Map Description Programming Codes See Also POWER, USER CAL 5, 9 In the menu structure there are two occurrences of this softkey. One occurs in the POWER (K], the other occurs in the USER CAL (MENU). Both softkeys operate the same way.
TrigOut Delay Programming Codes SCPI: TRIGger:ODELay <num>[time suffix] Analyzer: NONE See Also Start Sweep Trigger Auto, Start Sweep Trigger Bus, Start Sweep Trigger Ext T-4 Operating and Progr.
U Uncoupl Atten Function Group Menu Map Description Programming Codes See Also POWER 5 This softkey uncouples the attenuator (if there is one) from the ALC system. It allows independent control of attenuator settings. An asterisk next to the key label indicates that this feature is active.
Up/Down Power Function Group POWER Menu Map 5 Description This softkey activates the power step size function. It can be set from 0.01 to 20 dB. In this mode, power is stepped by the up/down arrow keys. An asterisk next to the key label indicates this feature is active.
Programming Codes SCPI: FREQuency:STEP[:INCR] <num>[freq suffix] or MAXimum I MINimum Analyzer: SF or SHCF <num> [HzIKz~MzIGz] See Also Manual Sweep , Sweep Mode Step, Up/Dn Size Swept Up/.
(USERCAL) Function Group USER CAL Menu Map 9 Description This softkey accesses the user calibration softkeys. FullUsr Cal Performs a complete alignment as determined by the instrument settings. Tracking Menu Accesses the softkeys of the tracking menu.
UsrNenu Clear Programming Codes SCPI: NONE Analyzer: NONE See Also (E), (PRIOR), Usl-Key Gleu , UsrMenu Clear UsrKey Clear Function Group SYSTEM Menu Map 8 Description This softkey lets you recall the user defined menu and remove a single softkey that appears in that menu.
Usrknu Clear Description This softkey recalls the user defined menu and removes all softkeys assigned to that menu. The empty user defined menu remains in the softkey label area.
Z Zero Freq Function Group Menu Map Description Programming Codes See Also SYSTEM 8 This softkey lets you enable a security feature that displays zeroes for all accessible frequency information. Once this security feature is activated, it can be turned off by a front panel (PRESET).
Zoom Function Group FREQUENCY Menu Map 2 Description This softkey activates the CF/Span sweep mode (zoom). In this mode, span is controlled by the up/down arrow keys. Center frequency is controlled by the rotary knob or the numeric entry keys. The left and right arrows control the resolution with which the center frequency can be changed.
2a ERROR MESSAGES Introduction This section lists the error messages that may be displayed by the front panel or transmitted by the synthesizer over the interface bus. Each error message is accompanied by an explanation, and suggestions are provided to help solve the problem.
w OPTION NOT INSTALLED. The language selected and the corresponding firmware/hardware necessary to run that language is not present in the synthesizer.
Error in Test Patch entry !!: This error will only occur if the service adjustment menu is accessed. Specifically, one of three entries has been attempted. w An invalid test patch number. n An invalid test patch data point. l An invalid parameter of the test patch specification.
LINT2 INTERRUPT: This can only be caused by an internal processor error. Refer to the “OPERATOR’S CHECK” chapter for instructions on contacting a qualified service technician. LINT6 INTERRUPT: This can only be caused by an internal processor error.
TRACE EXCEPTION: This can only be caused by an internal processor error. Refer to the “OPERATOR’S CHECK” chapter for instructions on contacting a qualified service technician. TRAP0 EXCEPTION: This can only be caused by an internal processor error.
Universal SCPI Error Messages Error Messages From -499 To -400 These error messages indicate that the Output Queue Control of the synthesizer has detected a problem with the message exchange protocol. This type of error sets the Query Error Bit (bit 2) in the Event Status Register.
-240, Hardware error; Rear panel HP-IB switch -224, Illegal parameter value -222, Data out of range;Expected O-l -222, Data out of range -221, Settings conflict -221, Settings conflict;List Arrays Inv.
-105, GET not allowed -104, Data type error -104, Data type error;Block not allowed -104, Data type error;Char not allowed -104, Data type error;Decimal not allowed -104, Data type error;Non-dec not a.
2b Menu Maps Menu Maps 2b-1.
.
.
.
.
.
.
.
.
.
2c Specifications This section lists the specifications for the HP 8360 Synthesized Sweepers. In a effort to improve these synthesized sweepers, Hewlett-Packard has made changes to this product which are identified with changes in the serial number prefix.
Frequency Range HP 83620A: 10 MHz to 20 GHz HP 83622A: 2 to 20 GHz HP 83623A: 10 MHz to 20 GHz High Power HP 83624A: 2 to 20 GHz High Power HP 83630A: 10 MHz to 26.
Synthesized Step Accuracy: Same as time base Sweep Minimum Step Size: Same as frequency resolution Number of Points: 2 to 801 Switching Time: Same as CW Dwell Time: 100 ps to 3.
RF Output Output Power Maximum Leveled3 Standard Option 006 HP 83620A, 83622A -l-13 +13 HP 83623A +17 +17 HP 83624A +20 4-17 HP 83630A Output Frequencies < 20 GHz +13 4-13 Output Frequencies 1 20 GHz t10 t10 HP 83640A Output Frequencies < 26.5 GHz i-10 +10 Output Frequencies > 26.
Accuracy (dB)4 Specifications apply in CW, step, list, manual sweep, and ramp sweep modes of operation. Frequency (GHz) Power < 2.0 > 2.0 and 5 20 > 2.0 and 5 40 > 40 > +lO dBm f1.2 f1.3 > -10 dBm5 f0.6 f0.7 Lto.9 f1.7 > -60 dBm f0.
Analog Power Sweep Range: -20 dBm to maximum available power, can be offset using step attenuator. External Leveling Range At External HP 33330D/E Detector: -36 to +4 dBm At External Leveling Input: -200 PV to -0.5 volts Source Match Typical HP 6365OA Power Flatness 4.
Typical ALC Linearity (Frequenciess 20GHz) -10 0 +10 +20 ALC Level(dBm) Spectral Purity Specifications apply in CW, step, list, and manual sweep modes of operation. Spurious Signals Harmonics Output HP 83620A HP 83623A HP 83630A HP 83640A HP 83650A Frequencies HP 83622A HP 83624A < 2.
-20 -30 -40 -50 g-60 -70 -80 -90 -100 Typical HP 83620A Harmonics & Subharmonics -20 -30 -40 -50 $40 -70 -80 -90 -100 Carrier Frequency (GHz) Typical HP 83623A Harmonics 7 13.5 20 Carrier Frequency (GHz) Non-Harmonically Related Output Frequencies: < 2.
Power-Line Related (< 300 Hz offset from carrier) 10 MHz to < 7 GHz -55 7 GHz to < 13.5 GHz -49 13.5 GHz to 20 GHz -45 > 20 GHz to < 26.
Modulation Pulse Pulse modulation specifications apply for output frequencies 400 MHz and above. On/Off Ratioll Rise/Fall Times Minimum Width Internally Leveled Search Mode Output Frequencies < 2.0 GHz Output Frequencies > 2.0 GHz ALC Off Mode Output Frequencies < 2.
Internal Pulse Generator Width Range: 1 ps to 65 ms Period Range: 2 ps to 65 ms Resolution: 1 ps AM and Scan Bandwidth (3 dB, 30% depth, modulation peaks 3 dB below maximum rated power): DC to 100 kHz.
Delta v = 29.60mvolts Vmarker 1 = 600.00pvolts Vmorker 2 = 30.200mvolts Timebose = 800ns/div FM Locked Mode Maximum Deviation: f8 MHz Rates (3 dB bandwidth, 500 kHz deviation): 100 kHz to 8 MHz Maximu.
Internal Modulation Generator Option 002 AM, FM Pulse Modulation Meter Internal Waveforms: sine, square, triangle, ramp, noise Rate Range Sine: 1 Hz to 1 MHz Square, triangle, ramp: 1 Hz to 100 kHz Resolution: 1 Hz Depth, deviation Range: same as base instrument Resolution: 0.
General Environmental Warm-Up Time Power Requirements Weight & Dimensions Adapters Supplied Operating Temperature Range: 0 to 55°C EMC: Within limits of VDE 0871/6.78 Level B, FTZ 1046/1984, and Mil-Std-461B Part 7 RE02 Operation: Requires 30 minute warm-up from cold start at 0 to 55°C.
Inputs & Outputs Auxiliary Output Provides an unmodulated reference signal from 2 to 26.5 GHz at a typical minimum power level of -10 dBm. Nominal output impedance 50 ohms. (SMA female, rear panel.) RF Output Nominal output impedance 50 ohms. (Precision 3.
10 MHz Reference Input Accepts 10 MHz flO0 Hz, 0 to +lO dBm reference signal for operation from external time base. Nominal input impedance 50 ohms. Damage level +lO, -5 volts. (BNC female, rear panel.) 10 MHz Reference Output Nominal signal level 0 dBm, nominal output impedance 50 ohms.
Pulse Sync Out (Option 002 only) Outputs a 50 ns wide TTL pulse synchronized to the leading edge of the internally-generated pulse. (BNC female, rear panel.) AM/FM Output (Option 002 only) Outputs the internally-generated AM or FM waveform. This output can drive 50 ohms or greater.
Option 008 1 Hz Frequency Resolution Provides frequency resolution of 1 Hz. Option 700 MATE System Compatibility Provides CIIL programming commands for MATE system compatibility. Option 806 Rack Slide Kit Used to rack mount HP 8360 while permitting access to internal spaces.
3 INSTALLATION This chapter provides installation instructions for the HP 8360 series synthesized sweeper and its accessories. It also provides information about initial inspection, damage claims, preparation for use, packaging, storage, and shipment.
Equipment Supplied All HP 8360 series synthesizers are sent from the factory with the following basic accessories: n Rack handles (mounted) n Power cord n Software package n A set of manuals The following adapters are also shipped with the synthesizers: HP 83620A HP 83622A HP 83623A HP 83624A HP 83630A Type-N to 3.
Preparation for Use Power Requirements Line Voltage and Fuse Selection The HP 8360 series synthesized sweepers require a power source of 115v (+10/-2501) o or 230V (+lO/-15%), 48 to 66 Hz, single-phase. Power consumption is 400 VA maximum (30 VA in standby).
Power Cable In accordance with international safety standards, this instrument is equipped with a three-wire power cable. When connected to an appropriate power line outlet, this cable grounds the instrument cabinet. Figure 3-l shows the styles of plugs available on power cables supplied with Hewlett-Packard instruments.
PLUG TYPE ’ 250V CABLE HP PART NUMBER* 8120-1351 8120-1703 PLUG DESCRIPTION 2 Straight BSI 363A 90” CABLE LENGTH (inches) 90 90 CABLE FOR USE IN COUNTRY COLOR Mint Gray United Kingdom, Mint Gray C.
Language Selection You can operate the synthesizer using one of three external interface languages: SCPI, Analyzer language, or CIIL (Option 700). How to View or Change a Language Selection from the F.
HP-IB LANG ADDRESS Figure 3-2. Rear Panel HP-IB Switch HP-IB Address In certain applications, the synthesizer acts as a controller for a Selection power meter and a printer.
How to View or Change an HP-IB address from the Front Panel Note To set an HP-IB address from the front panel, the instrument address on the rear panel HP-IB switch (Figure 3-2) must be set to 31 (all 1s). 1. Press SYSTEM (e). 2. Select HP-IB Menu Adrs Nenu.
Operating Environment Temperature. The synthesizer may be operated in environments with temperatures from 0 to +55”C. Humidity. The synthesizer may be operated in environments with humidity from 5 to 80% relative at +25 to 40°C. However, protect the synthesizer from temperature extremes, which can cause condensation within the instrument.
Chassis Kits Rack Mount Slide Kit Option 806 synthesizers are supplied with rack mount slides and the (Option 806) necessary hardware to install them on the synthesizer.
Figure 3-3. Removing the Side StraPs and Feet NSTALLATION 3-”.
6. Refer to Figure 3-4. Remove the inner slide assemblies from the outer slide assemblies. 7. To secure the side covers in place, mount the inner slide assemblies to the instrument with the screws provided. 8. With the appropriate hardware, install the outer slide assemblies to the system enclosure.
Rack Flange Kit for Option 908 synthesizers are supplied with rack flanges and the Synthesizers with necessary hardware to install them on the synthesizer after removing Handles Removed the instrument handles. The following table itemizes the parts in this (Option 908) kit* Table 3-4.
Installation Procedure 1. Refer to Figure 3-5. Remove handle trim strips. 2. Remove the four screws on each side that attach the handles to the instrument; remove the handles. 3. Using the screws provided, attach the rack mount flanges to the synthesizer.
Rack Flange Kit for Option 913 synthesizers are supplied with rack flanges and the Synthesizers with necessary hardware to install them on the synthesizer without Handles Attached removing the instrument handles. The following table itemizes the (Option 913) parts in this kit.
Installation Procedure 1. Refer to Figure 3-6. Remove handle trim strips. 2. Remove the four screws on each side that attach the handles to the instrument. 3. Using the longer screws provided, attach the rack mount flanges to the outside of the handles.
Storage and Shipment Environment The synthesizer may be stored or shipped within the following limits: Temperature -40” to +75”c. Humidity 5% to 95% relative at 0” to +4O”C. Altitude Up to 15240 meters. Pressure approximately 50,000 feet. The synthesizer should be protected from sudden temperature fluctuations that can cause condensation.
Package the Use the following steps to package the synthesizer for shipment to Synthesizer for Hewlett-Packard for service: Shipment 1. Fill in a service tag (available at the end of Chapter 4) and attach it to the instrument. Please be as specific as possible about the nature of the problem.
Converting HP The following paragraphs are intended to assist you in converting 6340141 Systems to existing HP 8340/8341 based systems to HP 8360 series synthesized HP 8360 Series sweeper based systems. Both manual and remote operational Systems differences are addressed.
Manual Operation Compatibility The HP 8360 series synthesized sweepers are designed to be, in all but very few cases, a complete feature superset of the HP 8340/8341 synthesized sweepers.
System Connections The HP 8510 Network Analyzer The HP 8360 series synthesizer is compatible with any HP 8510 network analyzer with firmware revision 4.0 or higher. To upgrade firmware for an existing HP 8510, an HP 11575C Revision 4.0 Upgrade Kit or an HP 11575D Revision 5.
The HP 8757C/E Scalar Network Analyzer The connections between the analyzer and the HP 8360 series are similar to the connections between the analyzer and the HP 8340/8341. The HP 8360 series differs from the HP 8340/8341 in one connection only. It unnecessary to connect the modulator drive signal from the analyzer to the source.
Remote Operation Language Compatibility The HP 8360 series synthesized sweepers support three HP-IB programming languages; network analyzer language, SCPI (Standard Commands for Programmable Instruments), and M.
. Features not available in one of the language modes is marked by a horizontal line in the corresponding column. In the interest of brevity all SCPI commands have been listed in their most concise form. For a complete and comprehensive listing of the synthesizer SCPI commands refer to “SCPI Command Summary,” in Chapter 2.
Table 3-8. Programming Language Comparison Description Network Analyzer Language SCPI Language ALC Leveling mode, external A2 POW:ALC:SOUR DIOD; :POW:ATT:AUTO OFF Leveling mode, internal Leveling mode.
Table 3-8. Programming Language Comparison (continued) Description HP-IB only functions Output status byte Status byte mask Extended status byte mask Clear status byte Output learn string Mode string .
Table 3-8. Programming Language Comparison (continued) Description Set remote knob Request status byte mask Reset sweep Number of steps in a stepped sweep Swap network analyzer channels Test HP-IB int.
Table 3-8. Programming Language Comparison (continued) Description Modulation Scalar pulse modulation Enable external pulse modulation Disable external pulse modulation Enable linearly scaled AM Disab.
Table 3-8. Programming Language Comparison (continued) Description Sweep Set sweep time Sweep once Single sweep Sweep continuously Sweep manually Activate step sweep mode Activate ramp sweep mode Trig.
OPERATOR’S CHECK and ROUTINE MAINTENANCE WARNING No operator serviceable parts inside. Refer servicing to qualified personnel. To prevent electrical shock, do not remove covers. Operator’s Checks The local operator’s check (front panel use) allows the operator to make a quick check of the main synthesizer functions prior to use.
Local Operator’s Check Description The preliminary check provides assurance that most of the internal functions of the synthesizer are working. The main check provides a general check of the overall functions of the synthesizer. No external equipment is needed.
Main Check 1. 2. 3. 4. 5. 6. 7. 8. 9. Press [SERVICE). Select Selftest CFull) . Check that all tests performed pass. Press [PRESET). If the display indicates a user preset was performed, select Factory Preset . Verify that the green SWEEP LED is blinking, the amber RF ON/OFF LED is on, and the red INSTR CHECK LED is off.
Routine Maintenance Routine maintenance consists of replacing a defective line fuse, cleaning the air filter, cleaning the cabinet, and cleaning the display.
How to Clean the Fan The cooling fan located on the rear panel has a thin foam filter. How Filter often the filter must be cleaned depends on the environment in which the synthesizer operates. As the filter collects dust, the fan speed increases to maintain airflow (as the fan speed increases, so does the fan noise).
How to Clean the Clean the cabinet using a damp cloth only. Cabinet How to Clean the The display of the synthesizer is protected by a plastic display filter. Display Filter To clean the display filter, use mild soap or detergent and water, or a commercial window cleaner (ammonia does not hurt the plastic surface).
5 Instrument History How to Use Instrument History This manual documents the current production versions of the “standalone” HP 8360 series synthesized sweepers which include the HP 83620A/22A, HP 83623A/24A, HP 83640A/42A, and HP 83630A/50A.
.
Change B HP 8380 User’s Handbook HP 8362OA/22A/3OA instruments without Option 006, with serial prefix numbers 3213A and below, have a pulse modulation video feedthrough specification of 0.1% at frequencies 2 2.0 GHz. A replacement page for page 9 in the “Specifications” section is provided following this instruction page.
5-4 Change B HP 8380 User’s Handbook.
Modulation Pulse Pulse modulation specifications apply for output frequencies 400 MHz and above. On/Off Ratio” Rise/Fall Times Minimum Width Internally Leveled Search Mode Output Frequencies < 2.0 GHz Output Frequencies 2 2.0 GHz ALC Off Mode Output Frequencies < 2.
Internal Pulse Generator Width Range: 1 ps to 65 ms Period Range: 2 ps to 65 ms Resolution: 1 ps AM and Scan Bandwidth (3 dB, 30% depth, modulation peaks 3 dB below maximum rated power): DC to 100 kHz.
Change A HP 8380 User’s Handbook Instruments with serial prefix numbers 3143A and below do not have the Module Menu which is located in the ALC and the FREQUENCY function groups nor do they have the Dblr Amp Menu which is located in the POWER function group.
5-8 Change A HP 8360 User’s Handbook.
Range ~~63620~: HP83622k HP83623k HP636HA HP 83630A: HP6364oAz HP83642k HP8365ok lUMI3zto2OGHz 2to2OGHz 1OMHzto#)GI3zH.ighPowcr 2to2OGHzHighPowr IO MHz to 26.
Swept Mode HP mm~, sma, 136w, aau, WOA, . A~(sweeptimc>1OomsandS5s) Upper Frequencies s 20 GHz SweepWidths ~nxlOMHzO.l%ofsvapwidth f timebaseaawacy SwepWtiths > nx10MKzand S3OOMEk1%ofsuccpwidth swapw* >3aOMHxand S3GHz3MHz Sweep Widths >3 GIiz Ql% of swcp width upper E?equalcics a20 CHZ SwcpWtitbs ~nxlOMHzO.
Typical Maximum Available Power 30 25 20 $15 z 10 5 0 J I I I I I I 0.01 23 13.5 20 26.5 w 50 Fmqumcy @Hz) Accuracy (dB)a HP8362OA HP83623A HP8363OA HP8364OA HP8365OA HP83622A HP83624A OutputFrequendes c23Gl-k Fbwerlmmls >+lOdBm 21.2 21.2 k-12 fl.4 21.
Analog Power sweep Extpmd Leveling Flatness (dB) HPSS2OA HPSS62SA HP8363QA HP8364OA HP836SOA HP83622A HP83624A 0ugut- ~2.3 GHZ RwerLevels>+1odBm zo.9 20.9 -co.9 21.1 20.9 F’awer Levets z--10 d&n kO.5 f0.5 k0.S eo.7 10.5 poWerLav& >-60dBm kO.
T * r”’ ALC Unea 9 FmauenciessZOGHz ALC Level(dBm) Spectral Purity specifi cations apply in CW, Step, List, and Manual Sweep Modes of operation. spurious siguals HUI7llOJliCS HP6362OA HP83623A HP-A HP8364OA HP836SOA HPW622A HP83624A OuJPJtFrecloencies cl.
Ty&al HP K5623A Harmonics 0.01 23 7 13.5 Carrier Frsquency(GHz) 20 Subharmonics HP6362OA HP93623A HP9363OA HP9364OA HP6365OA HP63622A HP93624A O@WFiequencies <7GHz None None None NOflf2 NOM OWFrequencia rirand s2OGHz -50 -50 -50 -50 -50 outputkeq- >2OGHzsnd s4OGH -50 -40 -40 OWFrequencia >4OGHz -35 Non-Har~.
Residual FM @4S,5OHZtOl5kHZl3dWidth) Modulation Pulse TVpiwl Phase Noise (1Wit Carrier) 1 WHr 1 kHr 1 OkHr 1OOkHZ Offeet From Carrier 1 MHz lOMH2 CWModeorSweepWtiths snxlOMHznx6OHstypical SweepWidths ~nxlOhfEknxl5~Qpical HP 8362OA, 83622A, 83623A, BtZWA, 8364OA, Pulse modulation specifhlions apply for output hqwncks 400 MHz and above.
Pulse HP 8363o~, 83650~ 80dB 25ns ‘P-S owm- <2 GHz &~~@Frequencia z2GHz Minimum Repeaiaion FteqUenCY 1nbwnally- -- (dB. mlatheto~~ wm21p Wldthscl~(Sea=hModN Vldso-h owFreq- c2 GHz rlOd6m mwer&wels >lOdBm OutpnFrequencies ~ZGHzand s25.5GHz >26.
(AIClevelsnoWcanbcof&etusingstepattektor) NoxmalModec40dBmto1dBbelowma&numav&blepower Deep ModelO: -50 dBm to 1 dB below maximum a+aiiabk powr Unleveled Mode? -50 dBm to 1 dB below maximum available power salsii Iins lOO%/vo1t Aaxuacy (1 kHz rate, 30% depth): 5% Expmcnentiak 10 dB/wAt AaxmcyO.
FM LQdcedMode Maximum Deviation: k8MHz Rates(6dBbandwidth,lMHxdwiation~5OkHztolOh4Hz himhum Modulation Index (deviatkmhatee): n x 5 U&dad Mode MaxinnunDtviation Atrates UlOOHz -c75MHz AtRates >.
General &Wil-OllIMl~i Opera* Temperatun Range: 0 to 55O C EMC: Within limits of VDE 0871/6.7g Level B, FJZ 1046/19&J and M.il-Std-46lB Part 7 Warm-Up Time operation: Rquires 30 minute warm-up from cold start at 0 to 550 C Internal temperatwe equilibrium reached aver 2 hour warm-up at stable ambient temperature.
Inputs & Outputs R F output Nominal output inpedance 50 ohms (precision 35 mm male on 20 and 26.5 GHz models, 24mmmaleon4Oand5OGHzmodek,fnmtpaneL) ExmJa.lALcIllput Used for negative external defector or power meter kveling. Nominal input impedance IO0 kohms, damage kvel -c 15 volts.
AuxmryJJltelface Provkks control signal comw&ms to HP 8516A S-parameter Test Set, (Z-pin D-submilliature receptacle, rearpanel.) Puke viiii ootptlt @ption 002 only) Outputs the pulse modulation waveform that is supplied to the modulator. This can be either the intemally/extemally generated pulse modulation signal.
optioll9l3RackFhgeKit 5-22 Change A HP 8360 User’s Handbook.
Index 1 2 3 8 A 10 MHz frequency standard chosen automatically, T-l 10 MHz frequency standard external, T-l 10 MHz frequency standard internal, T-2 10 MHz frequency standard none chosen, T-2 10 MHz reference functions, R-l 10 MHz reference input connector, C-6 10 MHz reference output connector, C-6 1601 point flatness array, C-13 2.
menu, A-11 select auto, A-9 select high, A-10 select low, A-10 ALC bandwidth selection, l-50 ALC disabled theory of, A-8 ALC leveling internal, L-3 mm-wave module, L-3 normal, L-l power meter, L-4 sea.
assign softkey, A-22 attenuator, uncouple, U-l attenuator uncouple, M-14 attenuator, value set, S-59 auto fill increment, A-22 auto fill number of points, A-23 auto fill start, A-24 auto fill stop, A-.
change interface address, 3-8 characterization diode detectors, l-47 checks, operator, 4-l CIIL language, P-12 clean cabinet, 4-5 clean display, 4-6 clean fan filter, 4-5 clear display, B-l clear faul.
10 MHz reference output, C-6 AM/FM output, C-4 AM input, C-4 auxiliary interface, C-6 auxiliary output, C-5 external ALC, C-5 FM input, C-5 HP-IB, C-8 pulse input, C-5 pulse sync out, C-5 pulse video .
D damage claims, 3-l data display area, l-4 data questionable event register, clear, S-14 data types explained briefly, l-73 date code of firmware, S-60 DC FM, F-14 decrement key, A-21 decrement step .
doubler amp mode on, D-9 doubler amp softkeys, D-l down arrow, A-21 dual source control, S-64 dwell coupled, D-10 dwell time frequency point, E-2 list array, all points, G-l stepped frequency mode, S-.
example program flatness correction, l-97 HP-IB check, l-88 local lockout, l-89 looping and synchronization, l-95 setting up a sweep, l-90 synchronous sweep, l-96 use of queries, l-92 use of save/reca.
transition, l-102 firmware datecode identify, S-60 flatness array frequency value, E-2 user, F-4 flatness corrected power, I-33 flatness correction clear value, C-3 copy frequency list, C- 12 frequenc.
number of points, A-23, E-3 offset value, all points, G-l power offset, E-3 start frequency, A-24 step sweep activate, S-73 stop frequency, A-25 trigger external, L-8 trigger functions, P-13 trigger i.
front panel operation, L-9 full selftest, S-58 full selftest command, S-17 fullusr cal, F-19 function locked out message, 2a-3 fuse part numbers, 4-4 fuse, replace, 4-4 fuse selection, 3-3 G global dw.
printer address, P-10 SCPI programming, P-13 technical standard, 1-114 trigger, frequency list, L-8 HP-IB address changes to, 3-8 factory-set, 3-7 power meter, M-8 synthesizer, A- 1, E- 1 HP-IB addres.
details of operation, l-106 INIT trigger configuration example commands using, l-110 instrument history, 5-l instruments defined, l-63 instrument state, A-12 instrument state recall, R-l instrument st.
K invalid language message, 2a-3 invalid save/recall register message, 2a-3 invert input, I-12 key arrow, l-5 backspace, l-5 negative sign, l-5 numeric entry, l-5 terminator, l-5 keys entry area, E-4 .
point trigger, external, L-8 point trigger, interface bus, L-8 trigger functions, P-13 list mode point trigger automatic, L-7 local key, L-9 local lockout, example program, l-89 local lockout statemen.
simple examples, l-72 messages, error, 2a-l-8 message terminators response message terminator defined, 1-81 meter address, M-8 meter measure functions, M-27 meter on/off AM, M-9 meter on/off FM, M-9 m.
N new line affect on current path, l-68 in response message terminator, 1-81 symbol used for, l-64 use as a program message terminator, l-64 use as a response message terminator, l-65 with HP BASIC OU.
options identify command, S-14 output connector, C-12 output statement, l-60 output status bytes, A-19 OVEN message, 3-8 OVERMOD message during frequency modulation, M-17 OVRMOD message during amplitu.
power meter leveling, L-4 power meter measure correction functions, M-27 power meter programming address, M-8 power meter range, P-22 power offset, P-5 list array, all points, G-l list frequency, E-3 .
programming language comparison, 3-24 programming languages definition of, H-l programming language selection, 3-6 pulse delay normal, P-14 pulse delay softkeys, D-2 pulse delay triggered, P-15 pulse .
R rack flange kit contents, 3-13 rack flange kit installation, 3-14 rack flange kit, no handles, 3-13 rack flange kit, with handles, 3-15 rack mount slide installation, 3-10 rack mount slide kit conte.
root defined, l-68 root commands defined, l-68 rotary knob, 1-5, R-2 rounding, l-83 routine maintenance, 4-4 RPG, R-2 *RST, S-15 S *SAV, S-17 save instrument state command, S-17 save key, S-l save loc.
slow rise time, pulse modulation, M-22 softkey label area, l-4 software revision, S-60 SOURce in general programming model, l-107 trigger command defined, 1-113 source match, pulse modulation, M-21 so.
status registers condition register, l-101 enable register, l-102 event register, l-102 example sequence, l-102 general model, l-101 transition filter, l-102 status register structure, SCPI, S-55 stat.
sweep complete, wait command, S-17 sweep, example program, l-90 sweep functions, S-72 sweep LED, l-6, 1-12 sweep mode stepped functions, S-68 sweep mode ramp, S-73 sweep modes, 1-12 sweep mode step, S.
track fail, F-2 tracking, l-49 tracking functions, T-2 transition filter, l-102 in general status register model, l-101 *TRG, S-17 *TRG[trgJ, 1-113 triangle AM waveform, I-4 FM waveform, I-7 trigger a.
U uncoupled attenuator, A-7, U-l unleveled message, l-10, l-18 unlock, information on status, U-l UNLVLD message, l-18 UNLVLED message, l-10 during amplitude modulation, M-14 up arrow, A-21 user calib.
デバイスHP HP 8360の購入後に(又は購入する前であっても)重要なポイントは、説明書をよく読むことです。その単純な理由はいくつかあります:
HP HP 8360をまだ購入していないなら、この製品の基本情報を理解する良い機会です。まずは上にある説明書の最初のページをご覧ください。そこにはHP HP 8360の技術情報の概要が記載されているはずです。デバイスがあなたのニーズを満たすかどうかは、ここで確認しましょう。HP HP 8360の取扱説明書の次のページをよく読むことにより、製品の全機能やその取り扱いに関する情報を知ることができます。HP HP 8360で得られた情報は、きっとあなたの購入の決断を手助けしてくれることでしょう。
HP HP 8360を既にお持ちだが、まだ読んでいない場合は、上記の理由によりそれを行うべきです。そうすることにより機能を適切に使用しているか、又はHP HP 8360の不適切な取り扱いによりその寿命を短くする危険を犯していないかどうかを知ることができます。
ですが、ユーザガイドが果たす重要な役割の一つは、HP HP 8360に関する問題の解決を支援することです。そこにはほとんどの場合、トラブルシューティング、すなわちHP HP 8360デバイスで最もよく起こりうる故障・不良とそれらの対処法についてのアドバイスを見つけることができるはずです。たとえ問題を解決できなかった場合でも、説明書にはカスタマー・サービスセンター又は最寄りのサービスセンターへの問い合わせ先等、次の対処法についての指示があるはずです。