National Instrumentsメーカー320174B-01の使用説明書/サービス説明書
ページ先へ移動 of 182
© Copyright 1989, 1995 National Instruments Corporation. All Rights Reserved. Lab-NB User Manual Low-Cost Multifunction I/O Board for Macintosh NuBus September 1995 Edition Part Number 320174B-01.
National Instruments Corporate Headquarters 6504 Bridge Point Parkway Austin, TX 78730-5039 (512) 794-0100 Technical support fax: (800) 328-2203 (512) 794-5678 Branch Offices: Australia 03 9 879 9422,.
Limited Warranty The Lab-NB is warranted against defects in materials and workmanship for a period of one year from the date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective during the warranty period.
WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS National Instruments products are not designed with components and testing intended to ensure a level of reliability suitable for use in treatment and diagnosis of humans.
© National Instruments Corporation v Lab-NB User Manual Contents About This Manua l ........................................................................................................... . xi Organization of This Manua l ........................
Contents Lab-NB User Manual vi © National Instruments Corporation Chapter 3 Theory of Operatio n .......................................................................................................... . 3-1 Functional Overvie w ...................
Contents © National Instruments Corporation vii Lab-NB User Manual Programming Considerations........................................................................................ . 4-35 Register Programming Consideration s ........................
Contents Lab-NB User Manual viii © National Instruments Corporation Chapter 5 Calibratio n ............................................................................................................................ . 5-1 Calibration Equipment Requirement s .
Contents © National Instruments Corporation ix Lab-NB User Manual Figures Figure 1-1. The Relationship between the Programming Environment, NI-DAQ, and Your Hardwar e ...................................................................................
Contents Lab-NB User Manual x © National Instruments Corporation Table 4-4. Bipolar Input Mode A/D Conversion Values (Two’s Complement Coding ) ... . 4-38 Table 4-5. Analog Output Voltage Versus Digital Cod e .......................................
© National Instruments Corporation xi Lab-NB User Manual About This Manual This manual describes the mechanical and electrical aspects of the Lab-NB and contains information concerning its installation and operation. The Lab-NB is a low-cost multifunction analog, digital, and timing I/O board for Macintosh NuBus computers.
About This Manual Lab-NB User Manual xii © National Instruments Corporations • The Glossary contains an alphabetical list and description of terms used in this manual, including abbreviations, acronyms, metric prefixes, mnemonics, symbols, and terms.
About This Manual © National Instruments Corporation xiii Lab-NB User Manual • Your DAQ hardware user manuals—These manuals have detailed information about the DAQ hardware that plugs into or is connected to your computer.
© National Instruments Corporation 1-1 Lab-NB User Manual Chapter 1 Introduction This chapter describes the Lab-NB, lists what you need to get started, software programming choices, optional equipment, and explains how to unpack the Lab-NB. About the Lab-NB Thank you for buying the National Instruments Lab-NB.
Introduction Chapter 1 Lab-NB User Manual 1-2 © National Instruments Corporation What You Need to Get Started To set up and use your Lab-NB board, you will need the following: Lab-NB board Lab-NB Use.
Chapter 1 Introduction © National Instruments Corporation 1-3 Lab-NB User Manual NI-DAQ Driver Software The NI-DAQ driver software is included at no charge with all National Instruments DAQ hardware. NI-DAQ is not packaged with SCXI or accessory products, except for the SCXI-1200.
Introduction Chapter 1 Lab-NB User Manual 1-4 © National Instruments Corporation Register-Level Programming The final option for programming any National Instruments DAQ hardware is to write register- level software. Writing register-level programming software can be very time-consuming and inefficient, and is not recommended for most users.
Chapter 1 Introduction © National Instruments Corporation 1-5 Lab-NB User Manual The Lab-NB I/O connector is a 50-pin male ribbon cable header. The manufacturer part numbers used by National Instrume.
© National Instruments Corporation 2-1 Lab-NB User Manual Chapter 2 Configuration and Installation This chapter describes how to configure and install the Lab-NB into your Macintosh computer, and also includes signal connections to the Lab-NB and cable wiring.
Configuration and Installation Chapter 2 Lab-NB User Manual 2-2 © National Instruments Corporation 1 2 3 1W 1 2W 2 3W 3 Figure 2-1. Parts Locator Diagram.
Chapter 2 Configuration and Installation © National Instruments Corporation 2-3 Lab-NB User Manual Factory Default Jumper Settings The Lab-NB is shipped from the factory with the following configurat.
Configuration and Installation Chapter 2 Lab-NB User Manual 2-4 © National Instruments Corporation W2 ABC W1 Channel 1 Channel 0 ABC Figure 2-2. Bipolar Output Jumper Configuration Unipolar Output Se.
Chapter 2 Configuration and Installation © National Instruments Corporation 2-5 Lab-NB User Manual W3 ABC Figure 2-4. Bipolar Input Jumper Configuration Unipolar Input Selection You can select the unipolar (0 to 10 V) input configuration by setting the following jumper: Analog Input W3 B-C This configuration is shown in Figure 2-5.
Configuration and Installation Chapter 2 Lab-NB User Manual 2-6 © National Instruments Corporation Warning: Connections that exceed any of the maximum ratings of input or output signals on the Lab-NB may result in damage to the Lab-NB board and to the Macintosh computer.
Chapter 2 Configuration and Installation © National Instruments Corporation 2-7 Lab-NB User Manual Signal Connection Descriptions Pin Signal Name Description 1-8 ACH<0..7> Analog input channels 0 through 7 (single-ended). 9 AIGND Analog input ground.
Configuration and Installation Chapter 2 Lab-NB User Manual 2-8 © National Instruments Corporation cause conversions to occur; it cannot be used as a monitor to detect conversions caused by the onboard sample-interval timer. The following input ranges and maximum ratings apply to inputs ACH<0.
Chapter 2 Configuration and Installation © National Instruments Corporation 2-9 Lab-NB User Manual Analog Output Signal Connections Pins 10 through 12 of the I/O connector are analog output signal pins. Pins 10 and 12 are the DAC0 OUT and DAC1 OUT signal pins.
Configuration and Installation Chapter 2 Lab-NB User Manual 2-10 © National Instruments Corporation Digital I/O Signal Connections Pins 13 through 37 of the I/O connector are digital I/O signal pins. Digital I/O on the Lab-NB is designed around the 82C55A integrated circuit.
Chapter 2 Configuration and Installation © National Instruments Corporation 2-11 Lab-NB User Manual Figure 2-9 illustrates signal connections for three typical digital I/O applications. 14 P A0 22 PB0 30 PC0 13 DGND Lab-NB Board Switch I/O Connector +5 V +5 V LED TTL Signal Port B PB<7.
Configuration and Installation Chapter 2 Lab-NB User Manual 2-12 © National Instruments Corporation Table 2-2. Port C Signal Assignments Programming Mode Group A Group B PC7 PC6 PC5 PC4 PC3 PC2 PC1 P.
Chapter 2 Configuration and Installation © National Instruments Corporation 2-13 Lab-NB User Manual The following signals are used in the timing diagrams shown later in this chapter: Pin Direction Description STB* Input Strobe Input—A low signal on this handshaking line loads data into the input latch.
Configuration and Installation Chapter 2 © National Instruments Corporation 2-14 Lab-NB User Manual Mode 1 Input Timing The following figure illustrates the timing specifications for an input transfer in mode 1.
Chapter 2 Configuration and Installation © National Instruments Corporation 2-15 Lab-NB User Manual Mode 1 Output Timing The following figure illustrates the timing specifications for an output transfer in mode 1.
Configuration and Installation Chapter 2 Lab-NB User Manual 2-16 © National Instruments Corporation Mode 2 Bidirectional Timing The following figure illustrates the timing specifications for bidirectional transfers in mode 2.
Chapter 2 Configuration and Installation © National Instruments Corporation 2-17 Lab-NB User Manual Timing Connections Pins 38 through 48 of the I/O connector are connections for timing I/O signals. The timing I/O of the Lab-NB is designed around the 8253 Counter/Timer integrated circuit.
Configuration and Installation Chapter 2 Lab-NB User Manual 2-18 © National Instruments Corporation effect until a new DAQ sequence is established. Figures 2-11 and 2-12 illustrate two possible posttrigger DAQ timing cases. In Figure 2-11, the rising edge on EXTTRIG is sensed when the EXTCONV* input is high.
Chapter 2 Configuration and Installation © National Instruments Corporation 2-19 Lab-NB User Manual If PRETRIG is set, EXTTRIG serves as a pretrigger signal. In pretrigger mode, A/D conversions are enabled via software before a rising edge is sensed on the EXTTRIG input.
Configuration and Installation Chapter 2 Lab-NB User Manual 2-20 © National Instruments Corporation t ext Minimum 50 nsec EXTUPDA TE* DAC OUTPUT UPDA TE TMRINTUP DACWR T t ext Figure 2-14.
Chapter 2 Configuration and Installation © National Instruments Corporation 2-21 Lab-NB User Manual 8253 digital input specifications (referenced to DGND): V IH input logic high voltage 2.
Configuration and Installation Chapter 2 Lab-NB User Manual 2-22 © National Instruments Corporation +5 V I/O Connector CLK GA TE OUT DGND Lab-NB Board Counter (from Group B) 4.7 k Ω 13 Signal Source Switch Figure 2-16. Event-Counting Application with External Switch Gating Pulse-width measurement is performed by level gating.
Chapter 2 Configuration and Installation © National Instruments Corporation 2-23 Lab-NB User Manual +5 V I/O Connector CLK GA TE OUT DGND Lab-NB Board Gate Source Signal Source Counter 4.7 k Ω 13 Figure 2-17. Frequency Measurement Application The GATE, CLK, and OUT signals for counters B1 and B2 are available at the I/O connector.
Configuration and Installation Chapter 2 Lab-NB User Manual 2-24 © National Instruments Corporation Figure 2-18 shows the timing requirements for the GATE and CLK input signals and the timing specifications for the OUT output signals of the 8253.
© National Instruments Corporation 3-1 Lab-NB User Manual Chapter 3 Theory of Operation This chapter contains a functional overview of the Lab-NB and explains the operation of each functional unit making up the Lab-NB. Functional Overview The block diagram in Figure 3-1 shows a functional overview of the Lab-NB board.
Theory of Operation Chapter 3 Lab-NB User Manual 3-2 © National Instruments Corporation The following are the major components making up the Lab-NB board: • NuBus interface circuitry • Analog inp.
Chapter 3 Theory of Operation © National Instruments Corporation 3-3 Lab-NB User Manual The starting-address-detecting circuitry on the Lab-NB matches address lines 23 through 21 to the starting address specified by the slot in which the Lab-NB board is installed.
Theory of Operation Chapter 3 Lab-NB User Manual 3-4 © National Instruments Corporation Analog Input Circuitry The analog input circuitry consists of an input multiplexer, a software-programmable gain amplifier, a 12-bit ADC, and a 12-bit FIFO memory that is sign-extended to 16 bits.
Chapter 3 Theory of Operation © National Instruments Corporation 3-5 Lab-NB User Manual multichannel (scanned) data acquisition. Scanned data acquisition uses a counter to automatically switch between analog input channels during data acquisition.
Theory of Operation Chapter 3 Lab-NB User Manual 3-6 © National Instruments Corporation DAQ Rates Maximum DAQ rates (number of samples per second) are determined by the conversion period of the ADC plus the sample-and-hold acquisition time.
Chapter 3 Theory of Operation © National Instruments Corporation 3-7 Lab-NB User Manual The recommended DAQ rates given in Table 3-2 assume that voltage levels on all the channels included in the scan sequence are within range for the given gain and are driven by low- impedance sources.
Theory of Operation Chapter 3 Lab-NB User Manual 3-8 © National Instruments Corporation DAC0 DAC1 DAC Configuration Register Ref Coding Coding Ref DAC0 OUT AGND DAC1 OUT EXTUPDA TE* 5 V Internal Reference DAC0WR Data DAC1WR Counter A2 CNFGWR TWOSDA0 TMR WGN1 TWOSDA1 TMR WGN0 TWOSDA0 TWOSDA1 12 I/O Connector NuBus Interface Figure 3-4.
Chapter 3 Theory of Operation © National Instruments Corporation 3-9 Lab-NB User Manual corresponding to an LSB change in the digital code word. For both unipolar and bipolar output, one LSB corresponds to the following formula: 10 V 4, 096 Digital I/O Circuitry The digital I/O circuitry is designed around an 82C55A integrated circuit.
Theory of Operation Chapter 3 Lab-NB User Manual 3-10 © National Instruments Corporation All three ports on the 82C55A are TTL-compatible. When enabled, the digital output ports are capable of sinking 2.5 mA of current and sourcing 2.5 mA of current on each digital I/O line.
Chapter 3 Theory of Operation © National Instruments Corporation 3-11 Lab-NB User Manual Each 8253 contains three independent 16-bit counter/timers and one 8-bit Mode Register. As shown in Figure 3-6, counter group A is reserved for DAQ timing, and counter group B is free for general use.
© National Instruments Corporation 4-1 Lab-NB User Manual Chapter 4 Register-Level Programming This chapter describes in detail the address and function of each of the Lab-NB control and status registers. This chapter also includes important information about register-level programming the Lab-NB.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-2 © National Instruments Corporation Table 4-1. Macintosh Slot Addresses Slot Number Starting Address (Hex) Ending Address (Hex) 24-Bit Mode .
Chapter 4 Register-Level Programming © National Instruments Corporation 4-3 Lab-NB User Manual Table 4-2. Lab-NB Register Map Offset Register Name Address (Hex) Type Size Analog Input Register Group .
Register-Level Programming Chapter 4 Lab-NB User Manual 4-4 © National Instruments Corporation Register Sizes The Macintosh permits three different memory word sizes for memory read and write operations–byte (8-bit), half-word (16-bit), and word (32-bit).
Chapter 4 Register-Level Programming © National Instruments Corporation 4-5 Lab-NB User Manual Analog Input Register Group The four registers making up the Analog Input Register Group control the analog input circuitry and are used for reading from the A/D FIFO.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-6 © National Instruments Corporation A/D Configuration Register The A/D Configuration Register indicates the input channel to be read and the gain for the analog input circuitry.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-7 Lab-NB User Manual Bit Name Description (continued) 8 PRETRIG Pretrigger Bit—This bit is used to set the pretriggering feature on the Lab-NB. It also supersedes any setting in the EXTTRIGEN bit described earlier.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-8 © National Instruments Corporation Bit Name Description (continued) Channel Scanning later in this chapter for the correct sequence involved in setting the SCANEN bit. 3–1 GAIN<2..0> Gain Bit—These three bits select the gain setting as follows: GAIN<2.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-9 Lab-NB User Manual Status Register The Status Register indicates the status of the current A/D conversion. The bits in this register determine if a conversion is being performed or if data is available and any errors have been found.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-10 © National Instruments Corporation A/D FIFO Register Reading the A/D FIFO Register returns the next A/D conversion value stored in the A/D FIFO.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-11 Lab-NB User Manual A/D FIFO Register (continued) Bit Map: Two’s complement binary mode 15 14 13 12 11 10 9 8 Sign Extension Bits D11 D10 D9 D8 76 54 32 10 D7 D6 D5 D4 D3 D2 D1 D0 Bit Name Description 15– 0 D<15.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-12 © National Instruments Corporation A/D Clear Register The ADC can be reset by writing to this register. This operation clears the FIFO and loads the last conversion value into the FIFO. All error bits in the Status Register are cleared as well.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-13 Lab-NB User Manual Analog Output Register Group The four registers making up the Analog Output Register Group are used for loading the two 12-bit DACs in the two analog output channels.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-14 © National Instruments Corporation DAC Configuration Register This register determines if data written to the DACs is in straight binary or two’s complement form. It also configures the DACs to output data automatically at a rate controlled by counter A2 OR EXTUPDATE*.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-15 Lab-NB User Manual DAC0 and DAC1 Data Registers Writing to these registers loads the corresponding analog output channel DAC, thereby updating the voltages generated by the analog output channels.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-16 © National Instruments Corporation 8253 Counter/Timer Register Groups The eight registers making up the two Counter/Timer Register Groups access the two onboard 8253 Counter/Timers. Each 8253 has three counters.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-17 Lab-NB User Manual Counter A0 Data Register The Counter A0 Data Register is used for loading and reading back contents of 8253(A) counter 0.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-18 © National Instruments Corporation Counter A1 Data Register The Counter A1 Data Register is used for loading and reading back contents of 8253(A) counter 1.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-19 Lab-NB User Manual Counter A2 Data Register The Counter A2 Data Register is used for loading and reading back contents of 8253(A) counter A2.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-20 © National Instruments Corporation Counter A Mode Register The Counter A Mode Register determines the operation mode for each of the three counters on the 8253(A) chip.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-21 Lab-NB User Manual Counter B0 Data Register The Counter B0 Data Register is used for loading and reading back the contents of 8253(B) counter 0.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-22 © National Instruments Corporation Counter B1 Data Register The Counter B1 Data Register is used for loading and reading back the contents of 8253(B) counter 1.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-23 Lab-NB User Manual Counter B2 Data Register The Counter B2 Data Register is used for loading and reading back the contents of 8253(B) counter 2.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-24 © National Instruments Corporation Counter B Mode Register The Counter B Mode Register determines the operation mode for each of the three counters on the 8253(B) chip.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-25 Lab-NB User Manual 82C55A Digital I/O Register Group Digital I/O on the Lab-NB uses an 82C55A integrated circuit. The 82C55A is a general-purpose PPI containing 24 programmable I/O pins.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-26 © National Instruments Corporation Port A Register Reading the Port A Register returns the logic state of the eight digital I/O lines constituting port A, that is, PA<0.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-27 Lab-NB User Manual Port B Register Reading the Port B Register returns the logic state of the eight digital I/O lines constituting port B, that is, PB<0.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-28 © National Instruments Corporation Port C Register Port C is special in the sense that it can be used as an 8-bit I/O port like port A and port B if neither port A nor port B is used in handshaking (latched) mode.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-29 Lab-NB User Manual Digital Control Register The Digital Control Register can be used to configure port A, port B, and port C as inputs or outputs as well as selecting simple mode (basic I/O) or handshaking mode (strobed I/O) for transfers.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-30 © National Instruments Corporation Interrupt Control Register Group This group is made up of two registers. Writing to the Interrupt Control Register enables the interrupt facility on the Lab-NB.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-31 Lab-NB User Manual Interrupt Control Register Setting bits of this register causes an interrupt to occur when the current process is complete.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-32 © National Instruments Corporation Bit Name Description (continued) the Timer Interrupt Clear Register.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-33 Lab-NB User Manual Interrupt Status Register The Interrupt Status Register indicates the status of the Interrupt Control Register bits and the interrupt lines.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-34 © National Instruments Corporation Timer Interrupt Clear Register Writing to the Timer Interrupt Clear Register clears the TIMERUP bit in the Interrupt Status Register.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-35 Lab-NB User Manual Configuration EPROM The Configuration EPROM is an onboard read-only memory that contains information required by the Macintosh operating system. The Macintosh system Slot Manager reads the Configuration EPROM upon system startup.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-36 © National Instruments Corporation 4. Write 0000 (hex) to the A/D Configuration Register (16-bit write). 5. Write 00 (hex) to the A/D Clear Register (8-bit write). 6. Read the data from the A/D FIFO Register (16-bit read).
Chapter 4 Register-Level Programming © National Instruments Corporation 4-37 Lab-NB User Manual 1. Select analog input channel and gain. The analog input channel and gain are selected by writing to the A/D Configuration Register.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-38 © National Instruments Corporation used for A/D timing, the DAVAIL bit should be set after 12 msec or after a rising edge in EXTCONV*, whichever occurs later.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-39 Lab-NB User Manual Clearing the Analog Input Circuitry The analog input circuitry can be cleared by writing to the A/D Clear Register, which leaves the analog input circuitry in the following state: • Analog input error flags OVERFLOW and OVERRUN are cleared.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-40 © National Instruments Corporation Programming in Controlled Acquisition Mode The following programming steps are required for a DAQ operation in controlled acquisition mode: 1. Select analog input channel, gain, and timebase source for counter A0.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-41 Lab-NB User Manual 3. Program counters A0 and A1. This step involves programming counter A0 to generate periodic conversion pulses and programming counter A1 to interrupt on terminal count mode (mode 0).
Register-Level Programming Chapter 4 Lab-NB User Manual 4-42 © National Instruments Corporation Use the following programming sequence to program the sample-interval counter. All writes are 8-bit write operations. All values given are hexadecimal. a.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-43 Lab-NB User Manual Programming in Freerun Acquisition Mode Freerun acquisition mode uses only counter A0 as the sample-interval counter. The number of A/D conversions that have occurred (that is, the sample count) is maintained by software in this case.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-44 © National Instruments Corporation c. Write the most significant byte of the timebase count to the Counter B Data Register. For example, programming a timebase of 10 µsec requires a timebase count of 10 µsec 0.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-45 Lab-NB User Manual 7. Service the DAQ operation. Once the DAQ operation is started by writing the most significant byte of.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-46 © National Instruments Corporation Using the EXTTRIG Signal to Terminate a Multiple A/D Conversion DAQ Operation (Pretrigger Mode) If the PRETRIG bit is set in the ADC Command Register, EXTTRIG functions as a stop trigger for a multiple A/D conversion DAQ operation.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-47 Lab-NB User Manual 4. Clear the A/D circuitry. 5. Program counter A1 and enable EXTCONV* and EXTTRIG input. 6. Service the DAQ operation. Each of these programming steps is explained as follows.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-48 © National Instruments Corporation To program the counters, use the following programming sequence: a.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-49 Lab-NB User Manual Pretrigger Mode The following programming steps are required for a DAQ operation in controlled acquisition mode using EXTCONV*.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-50 © National Instruments Corporation 4. Clear the A/D circuitry. Before the DAQ operation is started, the A/D FIFO must be emptied in order to clear any old A/D conversion results.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-51 Lab-NB User Manual Two error conditions may occur during a DAQ operation: an overflow error or an overrun error. These error conditions are reported through the Status Register and should be checked every time the Status Register is read to check the DAVAIL bit.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-52 © National Instruments Corporation channel 3, channel 2, channel 1, channel 0, channel 3, channel 2, channel 1, channel 0, channel 3, and so on. Note: Select the analog input channel and gain in the following order: 1.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-53 Lab-NB User Manual by jumper settings described in Chapter 2, Configuration and Installation . Table 4-5 shows the output voltage versus digital code for a unipolar analog output configuration.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-54 © National Instruments Corporation Table 4-6. Analog Output Voltage Versus Digital Code (Bipolar Mode, Two’s Complement Coding) Digital Code Voltage Output (Decimal) (Hex) (V ref = 10 V) -2,048 F800 -5.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-55 Lab-NB User Manual 3. Install an interrupt service routine. You must install an interrupt service routine for the slot containing the Lab-NB. Consult the Inside Macintosh manual for information regarding the installation of interrupt service routines.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-56 © National Instruments Corporation Mode 0–Basic I/O This mode is for simple I/O operations for each of the ports. No handshaking is required; data is simply written to or read from a specified port.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-57 Lab-NB User Manual Register Descriptions and Programming Examples The following figures show the two control-word formats used to completely program the 82C55A. The control-word flag determines which control-word format is being programmed.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-58 © National Instruments Corporation This section describes the Digital Control Register, which is used to program the 82C55A ports in any one of the three modes discussed earlier in this section.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-59 Lab-NB User Manual Example 2. Configure port A for input, port B and port C for output: • Write 90 (hex) to the Digital Control Register. • Write 8-bit data to port B or port C.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-60 © National Instruments Corporation Port C status-word bit definitions for input (port A and port B): 76 54 32 10 I/O I/O IBFA INTEA INTRA INTEB IBFB INTRB Bit Name Description 7, 6 I/O Extra I/O status lines when port A is in mode 1 input.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-61 Lab-NB User Manual Mode 1 Input Programming Example Example 1. Configure port A as an input port in mode 1: • Write B0 (hex) to the Digital Control Register. • Wait for bit 5 of port C (IBFA) to be set, indicating that data has been latched into port A.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-62 © National Instruments Corporation Port C status-word bit definitions for output (port A and port B): 76 54 32 10 OBFA* INTEA I/O I/O INTRA INTEB* OBFB INTRB Bit Name Description 7 OBFA* Output Buffer Full for Port A—Low indicates that the CPU has written data out to port A.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-63 Lab-NB User Manual Mode 1 Output Programming Example Example 1. Configure port A as an output port in mode 1: • Write A0 (hex) to the Digital Control Register.
Register-Level Programming Chapter 4 Lab-NB User Manual 4-64 © National Instruments Corporation Port C status-word bit definitions for bidirectional data path (port A only): 76 54 32 10 OBFA* INTE1 IBFA INTE2 INTRA I/O I/O I/O Bit Name Description 7 OBFA* Output Buffer Full—Low indicates that the CPU has written data out to port A.
Chapter 4 Register-Level Programming © National Instruments Corporation 4-65 Lab-NB User Manual Mode 2 Programming Example Example 1. Configure port A in mode 2: • Write C0 (hex) to the Digital Control Register. • Wait for bit 7 of port C (OBFA*) to be cleared, indicating that the data last written to port A has been read.
© National Instruments Corporation 5-1 Lab-NB User Manual Chapter 5 Calibration This chapter discusses the calibration procedures for the Lab-NB analog input and analog output circuitry.
Calibration Chapter 5 Lab-NB User Manual 5-2 © National Instruments Corporation Calibration Trimpots The Lab-NB has six trimpots for calibration. The location of these trimpots on the Lab-NB board is shown in the partial diagram of the board in Figure 5-1.
Chapter 5 Calibration © National Instruments Corporation 5-3 Lab-NB User Manual Analog Input Calibration To null out error sources that compromise the quality of measurements, you must calibrate the .
Calibration Chapter 5 Lab-NB User Manual 5-4 © National Instruments Corporation Input Range V -fs V +fs - 1 1 LSB 0.5 LSB -5 to +5 V -5 V +4.99756 V 2.44 mV 1.22 mV 0 to 10 V 0 V +9.99756 V 2.44 mV 1.22 mV Board Configuration The calibration procedure differs if you select either bipolar or unipolar input configuration.
Chapter 5 Calibration © National Instruments Corporation 5-5 Lab-NB User Manual b. Take analog input readings from channel 0 at a gain of 1, and adjust trimpot R10 until the ADC readings flicker evenly between 2,046 and 2,047.
Calibration Chapter 5 Lab-NB User Manual 5-6 © National Instruments Corporation Offset error in the analog output circuitry is the total of the voltage offsets contributed by each component in the circuitry.
Chapter 5 Calibration © National Instruments Corporation 5-7 Lab-NB User Manual c. Adjust trimpot R9 until the output voltage read is -5 V. 2. Adjus t the Analog Output Gain Adjust the analog output gain by measuring the output voltage generated with the DAC set at positive full-scale (4,095).
Calibration Chapter 5 Lab-NB User Manual 5-8 © National Instruments Corporation For analog output channel 1: a. Connect the voltmeter between DAC1 OUT (pin 12 on the I/O connector) and AOGND (pin 11). b. Set the analog output channel to 0 V by writing 0 to the DAC.
© National Instruments Corporation A-1 Lab-NB User Manual Appendix A Specifications This appendix lists the specifications of the Lab-NB. These specifications are typical at 25° C unless otherwise stated. The operating temperature range is 0° to 70° C.
Specifications Appendix A Lab-NB User Manual A-2 © National Instruments Corporation normally called nonlinearity, because relative accuracy ensures that the sum of quantization uncertainty and A/D conversion error does not exceed a given amount.
Appendix A Specifications © National Instruments Corporation A-3 Lab-NB User Manual Voltage offset ...................................................................... ±60 µV/° C Explanation of Analog Output Specifications Relative accuracy in a D/A system is the same as nonlinearity, because no uncertainty is added due to code width.
Specifications Appendix A Lab-NB User Manual A-4 © National Instruments Corporation Physical Board dimension s........................................................................ 27.62 by 10.16 cm (10.875 by 4.0 in.) I/O connector ...............
© National Instruments Corporation B-1 Lab-NB User Manual Appendix B I/O Connector This appendix contains the pinout and signal names for the I/O connector on the Lab-NB.
© National Instrument s Corporation C-1 Lab-NB User Manual Appendix C AMD 8253 Data Sheet * This appendix contains the manufacturer data sheet for the AMD 8253 System Timing Controller integrated circuit (Advanced Micro Devices, Inc.). This circuit is used on the Lab- NB.
.
.
.
.
.
.
.
.
.
.
.
.
© National Instrument s Corporation D-1 Lab-NB User Manual Appendix D OKI 82C55A Data Sheet * This appendix contains the manufacturer data sheet for the OKI 82C55A (OKI Semiconductor) CMOS programmable peripheral interface . This interface is used on the Lab-NB.
OKI 82C55A Data Sheet Appendix D Lab-NB User Manual D- 2 © National Instruments Corporation.
Appendix D OKI 82C55A Data Sheet © National Instruments Corporation D- 3 Lab-NB User Manual.
OKI 82C55A Data Sheet Appendix D Lab-NB User Manual D- 4 © National Instruments Corporation.
Appendix D OKI 82C55A Data Sheet © National Instruments Corporation D- 5 Lab-NB User Manual.
OKI 82C55A Data Sheet Appendix D Lab-NB User Manual D- 6 © National Instruments Corporation.
Appendix D OKI 82C55A Data Sheet © National Instruments Corporation D- 7 Lab-NB User Manual.
OKI 82C55A Data Sheet Appendix D Lab-NB User Manual D- 8 © National Instruments Corporation.
Appendix D OKI 82C55A Data Sheet © National Instruments Corporation D- 9 Lab-NB User Manual.
OKI 82C55A Data Sheet Appendix D Lab-NB User Manual D- 10 © National Instruments Corporation.
Appendix D OKI 82C55A Data Sheet © National Instruments Corporation D-11 Lab-NB User Manual.
OKI 82C55A Data Sheet Appendix D Lab-NB User Manual D- 12 © National Instruments Corporation.
Appendix D OKI 82C55A Data Sheet © National Instruments Corporation D-13 Lab-NB User Manual.
OKI 82C55A Data Sheet Appendix D Lab-NB User Manual D- 14 © National Instruments Corporation.
Appendix D OKI 82C55A Data Sheet © National Instruments Corporation D-15 Lab-NB User Manual.
OKI 82C55A Data Sheet Appendix D Lab-NB User Manual D- 16 © National Instruments Corporation.
Appendix D OKI 82C55A Data Sheet © National Instruments Corporation D-17 Lab-NB User Manual.
© National Instruments Corporation E-1 Lab-NB User Manual Appendix E Customer Communication ___________________________________________________ For your convenience, this appendix contains forms to h.
Technical Support Form ___________________________________________________ Photocopy this form and update it each time you make changes to your software or hardware, and use the completed copy of this form as a reference for your current configuration.
Lab-NB Hardware and Software Configuration Form ___________________________________________________ Record the settings and revisions of your hardware and software on the line to the right of each item.
Documentation Comment Form ___________________________________________________ National Instruments encourages you to comment on the documentation supplied with our products.
© National Instruments Corporation Glossary-1 Lab-NB User Manual Glossary ___________________________________________________ Prefix Meaning Value p- pico- 10 -12 n- nano- 10 -9 µ- micro- 10 -6 m- m.
Glossary Lab-NB User Manual Glossary-2 © National Instruments Corporation ksamples 1,000 samples LED light-emitting diode LS Low-power Schottky LSB least significant bit MB megabytes of memory m mete.
© National Instruments Corporation Index- 1 Lab-NB User Manual Index Numbers/Symbols +5 V signal (table), 2-7 82C55A Digital I/O Register group, 4-25 to 4-29 control words.
Index Lab-NB User Manual Index- 2 © National Instruments Corporation selecting analog input channel and gain, 4-37 and posttrigger mode, 4-47 and pretrigger mode, 4-49 and timebase source for counter.
Index © National Instruments Corporation Index- 3 Lab-NB User Manual analog input signal connections, 2-7 to 2-8 connections for signal sources (figure), 2-8 exceeding input signal range (warning), 2.
Index Lab-NB User Manual Index- 4 © National Instruments Corporation GATA1, 4-9 IBFA, 4-60, 4-64 IBFB, 4-60 INT, 4-33 INTE1, 4-64 INTE2, 4-64 INTEA, 4-60, 4-62 INTEB, 4-60, 4-62 INTRA, 4-60, 4-62, 4-64 INTRB, 4-60, 4-62 I/O, 4-60, 4-62, 4-64 MA<2.
Index © National Instruments Corporation Index- 5 Lab-NB User Manual Port C single bit set/reset control words, 4-65 controlled acquisition mode multiple A/D conversions on single input channel, 4-40.
Index Lab-NB User Manual Index- 6 © National Instruments Corporation DAC (digital-to-analog converter) jumper programming for unipolar or bipolar voltage, 3-8 to 3-9 programming analog output circuit.
Index © National Instruments Corporation Index- 7 Lab-NB User Manual programming example, 4-63 mode 2 bidirectional bus control words, 4-63 Port C pin assignments (figure), 4-64 Port C status-word bi.
Index Lab-NB User Manual Index- 8 © National Instruments Corporation programming analog output circuitry, 4-52 specifications and ratings, 2-20 to 2-21 waveform generation timing (figure), 2-20 F fax.
Index © National Instruments Corporation Index- 9 Lab-NB User Manual INTRB bit, 4-60, 4-62 I/O bit, 4-60, 4-62, 4-64 I/O connector pin assignments (figure), 2-5 to 2-6, B-1 J jumper settings analog o.
Index Lab-NB User Manual Index- 10 © National Instruments Corporation N NI-DAQ driver software, 1-3 NuBus interface circuitry, 3-2 to 3-3 block diagram, 3-2 O OBF* signal description (table), 2-13 mode 1 output timing, 2-15 mode 2 bidirectional timing, 2-16 OBFA* bit, 4-62, 4-64 OBFB* bit, 4-62 OKI 82C55A programmable peripheral interface.
Index © National Instruments Corporation Index- 11 Lab-NB User Manual selecting posttrigger mode, 4-47 selecting pretrigger mode, 4-49 terminating multiple A/D conversion DAQ operation using EXTTRIG,.
Index Lab-NB User Manual Index- 12 © National Instruments Corporation using EXTTRIG signal to initiate (posttrigger mode), 4-45 using EXTTRIG signal to terminate (pretrigger mode), 4-46 initializing .
Index © National Instruments Corporation Index- 13 Lab-NB User Manual and timebase source for counter A0, 4-40, 4-43 A/D FIFO Register clearing, 4-39, 4-41, 4-44, 4-47, 4-50 description, 4-10 to 4-11.
Index Lab-NB User Manual Index- 14 © National Instruments Corporation EXTCONV* low, 2-18 pretrigger DAQ timing (figure), 2-19 waveform generation timing with EXTUPDATE* signal (figure), 2-20 single b.
Index © National Instruments Corporation Index- 15 Lab-NB User Manual general-purpose timing signal connections, 2-21 to 2-24 event-counting application with external switch gating (figure), 2-22 fre.
デバイスNational Instruments 320174B-01の購入後に(又は購入する前であっても)重要なポイントは、説明書をよく読むことです。その単純な理由はいくつかあります:
National Instruments 320174B-01をまだ購入していないなら、この製品の基本情報を理解する良い機会です。まずは上にある説明書の最初のページをご覧ください。そこにはNational Instruments 320174B-01の技術情報の概要が記載されているはずです。デバイスがあなたのニーズを満たすかどうかは、ここで確認しましょう。National Instruments 320174B-01の取扱説明書の次のページをよく読むことにより、製品の全機能やその取り扱いに関する情報を知ることができます。National Instruments 320174B-01で得られた情報は、きっとあなたの購入の決断を手助けしてくれることでしょう。
National Instruments 320174B-01を既にお持ちだが、まだ読んでいない場合は、上記の理由によりそれを行うべきです。そうすることにより機能を適切に使用しているか、又はNational Instruments 320174B-01の不適切な取り扱いによりその寿命を短くする危険を犯していないかどうかを知ることができます。
ですが、ユーザガイドが果たす重要な役割の一つは、National Instruments 320174B-01に関する問題の解決を支援することです。そこにはほとんどの場合、トラブルシューティング、すなわちNational Instruments 320174B-01デバイスで最もよく起こりうる故障・不良とそれらの対処法についてのアドバイスを見つけることができるはずです。たとえ問題を解決できなかった場合でも、説明書にはカスタマー・サービスセンター又は最寄りのサービスセンターへの問い合わせ先等、次の対処法についての指示があるはずです。