YamahaメーカーYK180Xの使用説明書/サービス説明書
ページ先へ移動 of 168
YAMAHA MOTOR CO., LTD. OWNER'S MANUAL.
.
Before using the robot (Be sure to read the following notes.) At this time, our thanks for your purchase of this Y AMAHA YK-X series SCARA robot. (1) Please be sure to perform the follo wing tasks before using the robot. Note that the robot may operate abnormally (abnormal vibration or noise) if the follo wing work is not carried out.
(2) Caution when turning of f the robot controller On the YK120X and YK180X series robots, the harness ex erts a lar ge reaction force on the X and Y axis arms. When the power to the robot controller is turned of f, the arm positions might mov e slightly due to the harness reaction force, depending on where the arms are positioned.
Introduction The Y AMAHA YK120X and YK180 series robots are SCARA type industrial robots dev eloped based on years of Y AMAHA e xperience and achie vements in the automation f ield as well as ef forts to streamline our in-house manufacturing systems.
Clean Room Models YK120XC, YK150XC Compared to standard YX120X and YK150X, clean room models differ in the f ollo wing points. 1. Robot parameter has been changed. (See section 4 in chapter 2.) The Z-axis speed is lo wered to maintain the de gree of cleanliness and the bello ws durability .
CONTENTS CHAPTER 1 Using the Robot Safely 1 Safety Information ................................................................................... 1-1 2 Essential Caution Items ..........................................................................
5 User Wiring and User T ubing ................................................................ 3-13 6 Connecting a suction hose (YK120XC, YK150XC) ............................... 3-16 7 Attaching The End Effector .....................................
3-4-2 YK180X series (YK180X, YK220X) ...................................................................... 4-30 3-4-2-1 Adjusting the R-axis machine reference (YK180X, YK220X) ............................. 4-30 3-4-2-2 Adjusting the X-axis machine reference .
MEMO.
CHAPTER 1 Using the Robot Safely 1 Safety Information ................................................................................... 1-1 2 Essential Caution Items ........................................................................... 1-2 3 Special T raining for Industrial Robot Operation .
MEMO.
1-1 CHAPTER 1 Using the Robot Safely 1 Safety Information Industrial robots are highly programmable, mechanical de vices that provide a large de gree of freedom when performing v arious manipulati ve tasks. T o ensure correct and safe use of Y AMAHA industrial robots, carefully read this manual and make yourself well acquainted with the contents.
1-2 CHAPTER 1 Using the Robot Safely 2 Essential Caution Items Par ticularly important cautions for handling or operating the robot are described belo w . In addition, safety information about installation, operation, inspection and maintenance is provided in each chapter .
1-3 CHAPTER 1 Using the Robot Safely (3) Follow the instructions on warning labels and in this manual. Wa r n i ng label 3 (Fig. 1-3) is af f ixed to the robot.
1-4 CHAPTER 1 Using the Robot Safely (6) Use caution when releasing the Z-axis (vertical axis) brake. WARNING The Z-axis will slide down when the Z-axis brake is released, causing a hazard- ous situation. • Press the emergency stop button and prop up the Z-axis with a support stand before releasing the brake.
1-5 CHAPTER 1 Using the Robot Safely (10) Use caution on Z-axis movement when air supply is stopped. (2- axis robots with air-driven Z-axis) WARNING The Z-axis may suddenly drop when the air pressure to the Z-axis air cylinder solenoid valve is reduced, creating a hazardous situation.
1-6 CHAPTER 1 Using the Robot Safely (14) Consult us for corrective action when the robot is damaged or malfunction occurs. WARNING If any part of the robot is damaged or any malfunction occurs, continuous op- eration may be very dangerous. Please consult Y AMAHA dealer for corrective action.
1-7 CHAPTER 1 Using the Robot Safely (18) Protective bonding WARNING Be sure to ground the robot and controller to prevent electrical shock. (19) Always connect the robot to the specified controller .
1-8 CHAPTER 1 Using the Robot Safely (24) Do not apply excessive force to each section. ! CAUTION The YK120X series (YK120X, YK150X) and YK180X series (YK180X, YK220X) are designed to be compact, so the joints could be damaged if excessive force is applied, for example, during installation of an end ef fector .
1-9 CHAPTER 1 Using the Robot Safely (28) T ake the following precautions when transporting the robot. ! CAUTION If the robot is transported long distances by truck while mounted on an installation ba.
1-10 CHAPTER 1 Using the Robot Safely 3 Special T raining for Industrial Robot Opera- tion Companies or factories using industrial robots must make sur e that ev ery person, w ho operates or handles t.
1-11 CHAPTER 1 Using the Robot Safely 4 Robot Safety Functions (1) Overload detection This function detects an o verload applied to the motor and shuts of f the servo po wer . If an ov erload error occurs, take the follo wing measures. 1. Insert a timer in the program.
1-12 CHAPTER 1 Using the Robot Safely 5 Safety Measures for the System Since the robot is commonly used in conjunction with an automated system, dan- gerous situations are more likely to occur from the automated system than from the robot itself.
1-13 CHAPTER 1 Using the Robot Safely 6T rial Operation After making installations, adjustments, inspections, maintenance or repairs to the robot, make a trial run using the follo wing procedures.
1-14 CHAPTER 1 Using the Robot Safely 7W ork Within the Safeguard Enclosure (1) When work is required inside the safe guard enclosure, alw ays turn of f the controller and place a sign indicating that.
1-15 CHAPTER 1 Using the Robot Safely 8 Automatic Operation Automatic operation described here includes all operations in A UT O mode. (1) Check the follo wing before starting automatic operation. 1. No one is within the safeguard enclosur e. 2. The programming unit and tools are in their specif ied locations.
1-16 CHAPTER 1 Using the Robot Safely 1 1 W arranty The Y AMAHA robot and/or related product you hav e purchased are warranted against the defects or malfunctions as described belo w .
1-17 CHAPTER 1 Using the Robot Safely Y AMAHA MO T OR CO., L TD. MAKES NO O THER EXPRESS OR IMPLIED W ARRANTIES, INCLUDING ANY IMPLIED W ARRANTY OF MERCHANT ABILITY OR FITNESS FOR ANY P AR TICULAR PURPOSE.
1-18 CHAPTER 1 Using the Robot Safely 12 CE Marking When the Y AMAHA robots are exported to or used in EU (European Union) countries, refer to the separate "Y AMAHA robot controller o wner's manual" or "CE marking manual" for related information about CE marking.
CHAPTER 2 Functions 1 Robot Manipulator ................................................................................... 2-1 2 Robot Controller ...................................................................................... 2-5 3 Robot initialization number list .
MEMO.
2-1 CHAPTER 2 Functions 1 Robot Manipulator The YK-X series robots are a vailable in 4-axis models ha ving an X/Y -axis arm (equi valent to human arm) and a Z/R-axis (equi valent to human wr ist). W ith these 4 ax es, the YK-X series robots can mo ve as sho wn in Fig.
2-2 CHAPTER 2 Functions User tap (* four positions) Wa r ning label 3 Viewed from direction A Connector for user wiring (No .1 to 6) Ball screw Linear busing shaft Wa r ning label 2 Serial label Robot.
2-3 CHAPTER 2 Functions Serial label Connector for user wiring (No .1 to 6) Wa r ning label 2 Robot cable User tubing 1 ( φ 3) Suction coupler for base interior ( φ 6) User tubing 2 ( φ 3) M3 ground terminal User tubing 2 ( φ 3) User tubing 1 ( φ 3) Machine harness Suction coupler for X, Y and R axis joints Connector for user wiring (No .
2-4 CHAPTER 2 Functions A Serial label Connector for user wiring (No.1 to 6) Warning label 1 Robot cable User tubing 1 ( φ 3) User tubing 1 ( φ 3) User tubing 2 ( φ 3) Machine harness Connector for user wiring (No.
2-5 CHAPTER 2 Functions 2 Robot Controller The YK120X series robots (YK120X, YK150X) come with a robot controller (RCX142-T). The YK180X series robots (YK180X, YK220X) come with a robot controller (RCX142). Refer to the separate "Y AMAHA robot controller o wner's manual" for details on the robot controller .
2-6 CHAPTER 2 Functions 3 Robot initialization number list T he YK-X series robots are initialized for optimum setting (default setting) ac- cording to the robot model prior to shipping. The robot controllers do not ha ve to be reinitialized during normal operation.
2-7 CHAPTER 2 Functions 4 Parameters for Clean Room Models YK120XC, YK150XC Pa rt of robot parameters on clean room models has been changed to maintain the degree of cleanliness and the Z-axis bello ws durability . Along with this robot parameter change shown belo w , you must take the follo wing precautions.
2-8 MEMO.
CHAPTER 3 Installation 1 Robot Installation Conditions ................................................................... 3-1 1-1 Installation environments ...................................................................................... 3-1 1-2 Installation base .
MEMO.
3-1 CHAPTER 3 Installation 1 Robot Installation Conditions 1-1 Installation environments Be sure to install the robot in the follo wing en vironments. Items Allowable ambient temperature Allowable ambient humidity Altitude Ambient environments Vibration Air supply pressure, etc.
3-2 CHAPTER 3 Installation WARNING Do not operate the robot in locations subject to strong vibrations. The robot installation bolts might work loose and the robot topple over . The bolts on the robot body itself might also loosen, causing parts to fall of f, etc.
3-3 CHAPTER 3 Installation 1-2 Installation base 1) Prepare a suf f iciently rigid and stable installation base, taking account of the r obot weight including the end ef fector (gripper), workpiece and reaction fo rce while the robot is operating. The maximum reaction force (see Fig.
3-4 CHAPTER 3 Installation WARNING Do not place the robot on a moving installation base. Excessive loads will be applied to the robot arm by movement of the installation base, resulting in dam- age to the robot. ! CAUTION The manipulator positioning might decrease if the installation surface precision is insufficient.
3-5 CHAPTER 3 Installation 2 Installation 2-1 Unpacking WARNING The robot and controller are heavy . T ake sufficient care not to drop them during moving or unpacking as this may damage the equipment or cause bodily injury .
3-6 CHAPTER 3 Installation 2-2 Checking the product After unpacking, check the product conf iguration and conditions. The follo wing conf igurations are typical examples, so please check that the prod- uct is as specified in your or der .
3-7 CHAPTER 3 Installation 2-3 Moving the robot 1) F old in the arm and wind the robot cable as sho wn in Fig. 3-4. 2) The robot must be carried by two wor kers. One work er must hold the support sections shown in the dra wing with both hands, and the other w orker must carry the robot cable.
3-8 CHAPTER 3 Installation 2-4 Installing the robot Install the robot securely with the four hex sock et head bolts as sho wn in Fig. 3- 5. WARNING Be sure to use the specified type and number of bolts, and securely tighten them to the correct torque.
3-9 CHAPTER 3 Installation 3 Protective Bonding WARNING Be sure to ground the robot and controller to prevent electrical shock. WARNING T urn of f the controller before grounding the robot.
3-10 CHAPTER 3 Installation M3 Ground terminal Ground symbol YK120X, YK150X YK180X, YK220X Ground symbol M3 Ground terminal Fig. 3-6 Ground terminal.
3-11 CHAPTER 3 Installation 4 Robot Cable Connection The robot cable is pre-connected to each robot. Correctly install the other end of the robot cable to the robot controller . For details on connections to the robot controller , refer to Fig. 3-7 and the "Y AMAHA RCX142 robot controller o wner's manual".
3-12 CHAPTER 3 Installation WARNING For the YK120X series robots (YK120X, YK150X), always use the RCX142-T controller that is designed to provide 24V output. The model name "RCX142-T" is shown on the serial number label (see Fig. 2-5). Do not connect other robot controllers to the YK120X series robots.
3-13 CHAPTER 3 Installation 5 User Wiring and User T ubing WARNING Always turn off the controller and shut of f air supply before attempting wiring and piping work. If air or power is supplied during this work, the manipulator may move erroneously causing a hazardous situation.
3-14 CHAPTER 3 Installation 3) Signal wiring connections in the machine harness Connector pins 1 to 6 can be used. I O (Base side) 4 3 2 1 4 3 2 1 6 6 55 User signal line I O (Arm side) Signal Connect.
3-15 CHAPTER 3 Installation WARNING Arrange the user wiring and piping installed with the user wiring connector and user piping joint not to pose hazards for the operators. The operators could trip on these parts and be injured. ! CAUTION Always use the supplied connectors and pins.
3-16 CHAPTER 3 Installation 6 Connecting a suction hose (YK120XC, YK150XC) WARNING Always turn off the robot controller and shut of f air supply before connecting a suction hose.
3-17 CHAPTER 3 Installation 7 Attaching The End Effector 7-1 R-axis tolerable moment of inertia and acceleration coeffi- cient 1) The moment of inertia of a load (end ef fector and workpiece) that can be attached to the R-axis is limited by the strength of the robot dri ve unit and residual vibration during positioning.
3-18 CHAPTER 3 Installation ! CAUTION Depending on the Z-axis position, vibration may occur when the X, Y or R-axis moves. If this happens, reduce the X, Y or R-axis acceleration to an appropri- ate level. ! CAUTION If the moment of inertia is too large, vibration may occur on the Z-axis depend- ing on its operation position.
3-19 CHAPTER 3 Installation 7-1-1 Acceleration coefficient vs. moment of inertia (YK120X) 0 0 0.0005 0.005 0.0010 0.010 W=0.1kg W=0.2kg W=0.3kg 0.0015 0.015 0.0020 0.020 I r (kgm 2 ) J r (kgfcmsec 2 ) 100 80 60 40 20 A X, A Y, A R (%) 0.00025 ( 0.0025 ) 0 0 0.
3-20 CHAPTER 3 Installation W=0.4kg 0 0 0.0005 0.005 0.0010 0.010 0.0015 0.015 0.0020 0.020 I r (kgm 2 ) J r (kgfcmsec 2 ) 100 80 60 40 20 A X, A Y, A R (%) 0.00002 ( 0.0002 ) W=0.5kg 0 0 0.0005 0.005 0.0010 0.010 0.0015 0.015 0.0020 0.020 I r (kgm 2 ) J r (kgfcmsec 2 ) 100 80 60 40 20 A X, A Y, A R (%) 0.
3-21 CHAPTER 3 Installation 7-1-2 Acceleration coefficient vs. moment of inertia (YK150X) 0 0 0.0005 0.005 0.0010 0.010 W=0.1kg W=0.2kg W=0.3kg 0.0015 0.015 0.0020 0.020 I r (kgm 2 ) J r (kgfcmsec 2 ) 100 80 60 40 20 A X, A Y, A R (%) 0.00004 ( 0.0004 ) 0.
3-22 CHAPTER 3 Installation W=0.4kg W=0.5kg 0 0 0.0005 0.005 0.0010 0.010 0.0015 0.015 0.0020 0.020 I r (kgm 2 ) J r (kgfcmsec 2 ) 100 80 60 40 20 A X, A Y, A R (%) 0.00016 ( 0.0016 ) 0 0 0.0005 0.005 0.0010 0.010 0.0015 0.015 0.0020 0.020 I r (kgm 2 ) J r (kgfcmsec 2 ) 100 80 60 40 20 A X, A Y, A R (%) 0.
3-23 CHAPTER 3 Installation 7-1-3 Acceleration coefficient vs. moment of inertia (YK180X, YK220X) W=0.9, 1.0kg 0.0005 ( 0.005 ) 0.0005 ( 0.005 ) 0.0005 ( 0.005 ) 0 0 0.005 0.05 0.01 0.1 I r (kgm 2 ) J r (kgfcmsec 2 ) 100 80 60 40 20 A X, A Y, A R (%) W=0.
3-24 CHAPTER 3 Installation 7-2 Equation for moment of inertia calculation Usually the R axis load is not a simple form, and the calculation of the moment of inertia is not easy . As a method, the load is replaced with sev eral factors that resemble a simple form for which the moment of inertia can be calculated.
3-25 CHAPTER 3 Installation 3) Moment of inertia for c ylinder (part 2) The equation for the moment of inertia for a c ylinder that has a rotation center such as sho wn in Fig.
3-26 CHAPTER 3 Installation 5) When the object's center line is of fset from the rotation center . The equation for the moment of inertia, when the center of the c ylinder is of fset by the distance "x" from the rotation center as sho wn in Fig.
3-27 CHAPTER 3 Installation 7-3 Example of moment of inertia calculation Let's discuss an example in which the chuck and w orkpiece are at a position of fset by 10cm from the R-axis by a stay , as shown in Fig.
3-28 CHAPTER 3 Installation 2) Moment of inertia of the chuck When the chuck form resem- bles that shown in Fig. 3-21, the weight of the chuck (Wc) is Wc = 0.0078 × 2 × 4 × 6 = 0.37 (kgf) The moment of inertia of the chuck (Jc) is then calculated from Eq.
3-29 CHAPTER 3 Installation 7-4 Attaching the end effector WARNING Before attaching the end effector , be sure to turn of f the controller . The manipulator part to which an end ef fector is attached must hav e adequate strength and rigidity , as well as g ripping force to prev ent positioning errors.
3-30 CHAPTER 3 Installation Frmax Fxymax Mmax End effector Stay Fzmax Mrmax Fig. 3-24 Maximum load applied to end effector attachment T able 3-2 Bolts Used Number of bolts Nm kgfcm M3 or lager 2 or more 2.0 20 6 Tightening torque diameter(mm) +0.012 0 M4 or lager Robot Mode YK120X, YK150X YK180X, YK220X 2 or more 4.
3-31 CHAPTER 3 Installation WARNING The end effector attachment must have adequate strength to withstand the loads listed in T able 3-1. If too weak, the attachment may break during robot operation and fragments fly off causing accidents or injuries.
3-32 CHAPTER 3 Installation 7-5 Gripping force of end effector The gripping force of the end ef fector must hav e a suf f icient extra mar gin of strength versus the w orkpiece weight and reaction force applied to the workpiece during robot operation.
3-33 CHAPTER 3 Installation 8W orking Envelope and Mechanical Stopper Positions for Maximum W orking Envelope Wo rking en velope and mechanical stopper positions for the maximum w orking en velope of each robot are sho wn in "1-2 External vie w and dimensions" in Chapter 7.
3-34 MEMO.
CHAPTER 4 Adjustment 1 Overview .................................................................................................. 4-1 2 Safety Precautions .................................................................................. 4-1 3 Adjusting the origin .
MEMO.
4-1 CHAPTER 4 Adjustment 1 Overview YA MAHA robots hav e been completely adjusted at the f actory or by the sales representativ e before shipment, including the origin position adjustment. If the operating conditions are changed and the robot must be adjusted, then follo w the procedures described in this chapter .
4-2 CHAPTER 4 Adjustment 3 Adjusting the origin All models of the YK120X series and YK180X series robots use an absolute type position detector . The origin position (zero pulse point) can be determined by absolute reset. Once a bsolute reset is performed, you do not ha ve to repeat absolute reset when turning the po wer on next time.
4-3 CHAPTER 4 Adjustment 3-1 Absolute reset method 3-1-1 YK120X series (YK120X, YK150X) 3-1-1-1 Sensor method (R-axis) In the sensor method, the target axis is automatically operated for the absolute reset, and the absolute reset is performed at the position where the proximity sensor provided on the tar get axis detects the detection area (dog).
4-4 CHAPTER 4 Adjustment 3-1-1-2 Stroke end method (X-axis, Y -axis) W ith the strok e end method, the X and Y -axes are pushed against the mechanical stopper , and after the axis end is detected, absolute reset is performed from a position slightly back from the axis end.
4-5 CHAPTER 4 Adjustment 139 °± 4 ° 113 °± 4 ° Plus side Minus side Minus side Plus side Fig. 4-2 Default origin position (YK120X, YK150X, YK120XC, YK150XC) 147 ° (143 ° ) 121 ° 147 ° (143 .
4-6 CHAPTER 4 Adjustment 3-1-1-3 Stroke end method (Z-axis) W ith this method, the Z-axis is pushed against the mechanical stopper , and after the axis end is detected, absolute reset is performed from a position slightly back from the axis end. WARNING Serious injury might occur from physical contact with the robot during opera- tion.
4-7 CHAPTER 4 Adjustment 3-1-2 YK180X series (YK180X, YK220X) 3-1-2-1 Sensor method (R-axis) In the sensor method, the target axis is automatically operated for the absolute reset, and the absolute reset is performed at the position where the proximity sensor provided on the tar get axis detects the detection area (dog).
4-8 CHAPTER 4 Adjustment 3-1-2-2 Sensor method (X-axis, Y -axis) WARNING Serious injury might occur from physical contact with the robot during opera- tion. Never enter within the robot movement range during absolute reset. ! CAUTION The origin cannot be detected in any axis which is not positioned on the plus side from the origin (See Fig.
4-9 CHAPTER 4 Adjustment 3-1-2-3 Stroke end method (Z-axis) W ith this method, the Z-axis is pushed against the mec hanical stopper , and after the axis end is detected, absolute reset is performed from a position slightly back from the axis end. WARNING Serious injury might occur from physical contact with the robot during opera- tion.
4-10 CHAPTER 4 Adjustment 3-2 Machine reference T he YK-X Series position detector uses a resolv er ha ving one position that can perform absolute reset in respect to one motor rotation.
4-11 CHAPTER 4 Adjustment 3-3 Absolute reset procedures 3-3-1 Sensor method (R-axis) WARNING Serious injury might occur from physical contact with the robot during opera- tion. Never enter within the robot movement range during absolute reset. The operation procedure using the MPB is described ne xt.
4-12 CHAPTER 4 Adjustment 7) Since the message "Reset ABS encoder OK?" is displayed, check that there are not an y obstacles in the robot mov ement range, and press the F4 ke y (YES). 8) After the absolute reset is completed, check that the R-axis machine ref er- ence v alue displayed on the MPB is between 40 and 60 (recommended range).
4-13 CHAPTER 4 Adjustment 3-3-2 Stroke end method (X and Y axes of YK120X, YK150X) WARNING Serious injury might occur from physical contact with the robot during opera- tion. Never enter within the robot movement range during absolute reset. The operation procedure using the MPB is described ne xt.
4-14 CHAPTER 4 Adjustment 8) After the absolute reset is completed, check that the X-axis and Y -axis ma- chine reference v alue displayed on the MPB is within the absolute reset tol- erance range (40 to 60). If the machine reference v alue is outside the absolute reset tolerance range, then the next absolute reset may not be properly performed.
4-15 CHAPTER 4 Adjustment 3-3-3 Stroke end method (Z-axis) WARNING Serious injury might occur from physical contact with the robot during opera- tion. Never enter within the robot movement range during absolute reset. The operation procedure using the MPB is described ne xt.
4-16 CHAPTER 4 Adjustment 3-3-4 Sensor method (X and Y axes of YK180X, YK220X) WARNING Serious injury might occur from physical contact with the robot during opera- tion. Never enter within the robot movement range during absolute reset. T he operation procedure using the MPB is described ne xt.
4-17 CHAPTER 4 Adjustment 8) After the absolute reset is completed, check that the X-axis and Y -axis ma- chine reference v alue displayed on the MPB is within the absolute reset tol- erance range (40 to 60). If the machine reference v alue is outside the absolute reset tolerance range, then the next absolute reset may not be properly perf ormed.
4-18 CHAPTER 4 Adjustment 3-4 Adjusting the machine reference ! CAUTION If any machine reference is adjusted, the origin position may change. Before the adjustment, mark off the reference mark at the current origin posi- tion on the main body of the robot.
4-19 CHAPTER 4 Adjustment 3-4-1 YK120X series (YK120X, YK150X) 3-4-1-1 Adjusting the R-axis machine reference (YK120X, YK150X) The adjustment method for the R-axis machine reference is as follo ws.
4-20 CHAPTER 4 Adjustment 11) Go out of the safeguard enclosure, and check that no one is inside the safe- guard enclosure. Then turn on the controller . 12) Perfor m the absolute reset from outside the safeguard enclosur e. 13) After the absolute reset is completed, read the machine reference value dis- played on the MPB.
4-21 CHAPTER 4 Adjustment 3-4-1-2 Adjusting the R-axis machine reference (YK120XC, YK150XC) The adjustment method for the R-axis machine reference is as follo ws. 1) Prepare the necessary tools. • Hex wr ench set 2) Check that no one is inside the safeguar d enclosure, and then turn on the controller .
4-22 CHAPTER 4 Adjustment 11) Go out of the safeguard enclosure, and check that no one is inside the safe- guard enclosure. Then turn on the controller . 12) Perfor m the absolute reset from outside the safeguard enclosur e. 13) After the absolute reset is completed, read the machine reference value dis- played on the MPB.
4-23 CHAPTER 4 Adjustment 3-4-1-3 Adjusting the X-axis machine reference The adjustment method for the X-axis machine reference is as f ollo ws. 1) Prepare the necessary tools. • Hex wr ench set 2) Check that no one is inside the safeguar d enclosure, and then turn on the controller .
4-24 CHAPTER 4 Adjustment 11) Go out of the safeguard enclosure, and check that no one is inside the safe- guard enclosure. Then turn on the controller . 12) Perfor m the absolute reset from outside the safeguard enclosur e. 13) After completing absolute reset, check the machine reference value .
4-25 CHAPTER 4 Adjustment 3-4-1-4 Adjusting the Y -axis machine reference The adjustment method for the Y -axis machine reference is as follows. 1) Prepare the necessary tools. • Hex wr ench set 2) Check that no one is inside the safeguar d enclosure, and then turn on the controller .
4-26 CHAPTER 4 Adjustment 11) Go out of the safeguard enclosure, and check that no one is inside the safe- guard enclosure. Then turn on the controller . 12) Perfor m the absolute reset from outside the safeguard enclosur e. 13) After completing absolute reset, check the machine reference value .
4-27 CHAPTER 4 Adjustment 3-4-1-5 Adjusting the Z-axis machine reference The stroke end method is employed on the YK120X series robots for the absolute reset of the Z-axis. The origin position of the Z-axis is f ixed at the upper end of the Z-axis strok e , and it cannot be changed.
4-28 CHAPTER 4 Adjustment 8) If the machine reference v alue is not within the tolerance range (26 to 74%) perform the follo wing steps. WARNING The Z-axis will slide down when the Z-axis brake is released, causing a hazard- ous situation. • Press the emergency stop button and prop up the Z-axis with a support stand before releasing the brake.
4-29 CHAPTER 4 Adjustment 6 Z-axis upper end mechanical stopper position (b) (a) (c) Bolt Upper end mechanical stopper Linear shaft Ball screw Ball screw Sleeve Set screw Set screw Ball screw Section Fig.
4-30 CHAPTER 4 Adjustment 3-4-2 YK180X series (YK180X, YK220X) 3-4-2-1 Adjusting the R-axis machine reference (YK180X, YK220X) T he adjustment method for the R-axis machine reference is as follo ws.
4-31 CHAPTER 4 Adjustment 11) Go out of the safeguard enclosure, and check that no one is inside the safe- guard enclosure. Then tur n on the controller . 12) Perfor m the absolute reset from outside the safeguard enc losure. 13) After the absolute reset is completed, read the machine reference v alue dis- played on the MPB.
4-32 CHAPTER 4 Adjustment 3-4-2-2 Adjusting the X-axis machine reference T he adjustment method for the X-axis machine reference is as follo ws. 1) Prepare the necessary tools. • Hex wr ench set 2) Check that no one is inside the safeguar d enclosure, and then turn on the controller .
4-33 CHAPTER 4 Adjustment 11) Go out of the safeguard enclosure, and check that no one is inside the safe- guard enclosure. Then tur n on the controller . 12) Perfor m the absolute reset from outside the safeguard enc losure. 13) After completing absolute reset, c heck the machine reference v alue.
4-34 CHAPTER 4 Adjustment 3-4-2-3 Adjusting the Y -axis machine reference T he adjustment method for the Y -axis machine reference is as follo ws. 1) Prepare the necessary tools. • Hex wr ench set 2) Check that no one is inside the safeguar d enclosure, and then turn on the controller .
4-35 CHAPTER 4 Adjustment 11) Go out of the safeguard enclosure, and check that no one is inside the safe- guard enclosure. Then tur n on the controller . 12) Perfor m the absolute reset from outside the safeguard enc losure. 13) After completing absolute reset, c heck the machine reference v alue.
4-36 CHAPTER 4 Adjustment 3-4-2-4 Adjusting the Z-axis machine reference T he stroke end method is emplo yed on the YK180X series robots for the absolute reset of the Z-axis. T he origin position of the Z-axis is f ixed a t the upper end of the Z-axis stroke, and it cannot be changed.
4-37 CHAPTER 4 Adjustment 9) Remov e the Y -axis upper cov er . To r emov e the cov ers, see "7 Remo ving the Robot Cov ers" in Chapter 4. Place the upper co ver on the robot base (pedestal) side with the machine harness still connected. WARNING The Z-axis will slide down during the following work, causing a hazardous situation.
4-38 CHAPTER 4 Adjustment 5 15 Spline nut Upper end urethane damper Z-axis upper-end mechanical stopper Bolt Z-axis motor Bolt Ball screw Lower end urethane damper Fig.
4-39 CHAPTER 4 Adjustment 4 Setting the Soft Limits In the YK120X and YK180 series, the working en velope during manual and automatic operation can be limited by setting the plus soft limit [pulses] and minus soft limit [pulses] on each axis. The origin point ( 0 [pulses] ) is used as the reference to set the soft limits.
4-40 CHAPTER 4 Adjustment 7) Set the soft limits to within the figure for the X-axis and Y -axis encoder pulses that you noted abov e in step 5). This software limit setting must be made from outside the safeguard enc losure. Refer to the "Y AMAHA robot controller owner's manual" for further details on soft limit settings.
4-41 CHAPTER 4 Adjustment (2) Setting the Z-axis soft limits Make this setting from outside the safe guard enclosure. The Z-axis has mechanical stoppers fix ed at the upper and lower ends of the Z-axis mov ement range.
4-42 CHAPTER 4 Adjustment 5 Setting the Standard Coordinates ! CAUTION If the standard coordinate settings are incorrect, the acceleration cannot be optimized to match the arm position. This results in too short a service life, damage to the drive unit, or residual vibration during positioning.
4-43 CHAPTER 4 Adjustment 6 Affixing Stickers for Movement Directions and Axis Names The mov ement direction and axis name label sho wn in Fig. 4-16 is supplied with the robot. After installing the peripheral de vices, attach these labels at an easy-to- see position on the robot.
4-44 CHAPTER 4 Adjustment + - Z + Y - - R -+ X Fig. 4-17 Positions for affixing the stickers.
4-45 CHAPTER 4 Adjustment 7 Removing the Robot Covers To remov e the robot cov er , follow the procedure belo w . 1) Prepare the necessary tools. • Phillips-head scre wdriv er 2) T urn of f the controller . 3) Place a sign indicating the robot is being adjusted, to keep others from oper- ating the controller switch.
4-46 CHAPTER 4 Adjustment Base (robot pedestal) side cover w M2 × 5 ( × 4) (same on opposite side) q M2 × 5 ( × 4) Y-axis arm upper cover Base (robot pedestal) side cover Y-axis arm side cover Y-a.
4-47 CHAPTER 4 Adjustment Base rear cover w M3 × 6 ( × 4) YK180X, YK220X Base front cover Y-axis arm upper cover q M3 × 6 ( × 4) e M3 × 6 ( × 4) Fig.
4-48 MEMO.
CHAPTER 5 Periodic Inspecition 1 Overview .................................................................................................. 5-1 2P recautions ............................................................................................
MEMO.
5-1 CHAPTER 5 Periodic Inspection 1 Overview Daily and periodic inspection of the Y AMAHA robot is essential in order to ensure safe and ef f icient operation. This chapter describes the periodic inspection items and procedures for the Y AMAHA YK120X series and YK180 series robots.
5-2 CHAPTER 5 Periodic Inspection 2 Precautions (1) Periodic inspection must be performed by or in the presence of personnel who hav e recei ved the Robot T raining giv en by Y AMAHA or Y AMAHA dealers. (2) Do not attempt an y inspection, adjustment, repair and parts replacement not described in this manual.
5-3 CHAPTER 5 Periodic Inspection 3 Daily Inspection The follo wing is an inspection list that must be performed e very day before and after operating the robot. (1) Inspection to be performed with the controller turned off 1) T urn of f the controller .
5-4 CHAPTER 5 Periodic Inspection (3) Adjustment and parts replacement 1) After inspection, if you notice any adjustment or parts replacement is needed, f irst turn of f the controller and then enter the safeguard enclosure to perform the necessary work.
5-5 CHAPTER 5 Periodic Inspection 4 Six-Month Inspection Ta ke the follo wing precautions when performing 6-month inspection. WARNING I njury can occur if hands or fingers are squeezed between the drive pulley and belt. Always turn off the controller and use caution when handling these parts.
5-6 CHAPTER 5 Periodic Inspection (1) Inspection to be performed with the controller turned off 1) T urn of f the controller . 2) Place a sign showing that the robot is being inspected, to k eep others from operating the controller switch. 3) Enter the safe guard enclosure and check the follo wing points.
5-7 CHAPTER 5 Periodic Inspection (2) Inspection to be performed with the controller turned on WARNING The robot controller must be installed outside the safeguard enclosure, to pre- vent a hazardous situation in which you or anyone enter the safeguard enclo- sure to inspect the controller while it is turned on.
5-8 CHAPTER 5 Periodic Inspection 5 Replacing the Harmonic Drive Grease The YK120X series and YK180X series robots use a harmonic dri ve as the speed reduction gear for the X-axis, Y -axis and R-axis. The harmonic dri v e grease (SK- 2) must be replaced periodically .
5-9 CHAPTER 5 Periodic Inspection WARNING The motor and speed reduction gear casing are extremely hot after automatic operation, so burns may occur if these are touched. Before touching these parts, turn off the controller , wait for a while and check that the temperature has cooled.
5-10 CHAPTER 5 Periodic Inspection ! CAUTION The harmonic drive service life may shorten if the grease recommended by Y AMAHA is not used. Recommended grease Use the follo wing harmonic dri v e grease.
CHAPTER 6 Increasing the robot operating speed 1 Increasing the robot operating speed ...................................................... 6-1.
MEMO.
6-1 CHAPTER 6 Increasing the robot operating speed 1 Increasing the robot operating speed The robot operating speed can be increased by the following methods.
6-2 CHAPTER 6 Increasing the robot operating speed e Arch motion: Making the ar ch position value larger In the arch motion w , making the arch position v alue larger can further shor ten the cycle time. Since the robot arm mo ves along a lar ger arc, use caution to avoid obstacles if they ar e located near the arm mov ement path.
6-3 CHAPTER 6 Increasing the robot operating speed (2) Increasing the speed with the WEIGHT statement [Also refer to:] Robot controller owner's manual ("Robot parameters" – "Axis tip weight" in Chapter 4) Programming manual (WEIGHT statement in "11.
6-4 CHAPTER 6 Increasing the robot operating speed (3) Increasing the speed by the tolerance parameter [Also refer to:] Robot controller owner's manual ("Axis parameters" – "T olerance" in Chapter 4) Programming manual (TOLE statement in "11.
6-5 CHAPTER 6 Increasing the robot operating speed (4) Increasing the speed by the OUT effective position parameter [Also refer to:] Robot controller owner's manual ("Axis parameters" – "Out ef fecti ve P osition" in Chapter 4) Programming manual (OUTPOS statement in "11.
6-6 MEMO.
CHAPTER 7 Specifications 1 Manipulator .............................................................................................. 7-1 1-1 Basic specification .........................................................................................
MEMO.
7-1 CHAPTER 7 Specifications 1 Manipulator 1-1 Basic specification YK120X 69.5mm ± 113 ° 50.5mm ± 139 ° 30mm ± 360 ° 15W 13W 13W 13W 1.8m/s 0.7m/s 1700 ° /s ± 0.005mm ± 0.01mm ± 0.006 ° 3kg 3.1kg 3kg 3.1kg 7kg – – Class 10 (0.1 ∫ level during suction) 25N /min – – YK150X 99.
7-2 CHAPTER 7 Specifications 1-2 External view and dimensions J.S.T. Mfg Co., Ltd. SM connector SMR-6V-B, pin BYM-001T-0.6 or SYM-001T-P0.6 (supplied) Use the YC12 crimping machine Use M3 bolt for installation Do not screw the screw in deeper than this.
7-3 CHAPTER 7 Specifications Working envelope * Take care to prevent interference between the end tool, robot and peripheral devices, etc. X, Y-axis origin position X, Y-axis maximum movement position.
7-4 CHAPTER 7 Specifications J.S.T. Mfg Co., Ltd. SM connector SMR-6V-B, pin BYM-001T-0.6 or SYM-001T-P0.6 (supplied) Use the YC12 crimping machine Use M3 bolt for installation Do not screw the screw in deeper than this. M3 × length 6 pin (supplied) J.
7-5 CHAPTER 7 Specifications Working envelope * Take care to prevent interference between the end tool, robot and peripheral devices, etc. X, Y-axis origin position X, Y-axis maximum movement position.
7-6 CHAPTER 7 Specifications *2 * Maximum 10 mm rise during Z-axis stopper origin setting J.S.T. Mfg Co., Ltd. SM connector SMR-6V-B, pin BYM-001T-0.6 or SYM-001T-P0.6 (supplied) Use the YC12 crimping machine User tubing 1 ( φ 3) User tubing 2 ( φ 3) Do not attach any wire or tube to this cable.
7-7 CHAPTER 7 Specifications Working envelope X, Y-axis origin position X, Y-axis maximum movement position during X, Y-axis absolute reset stopper origin setting Use M3 bolt for installation *1 *2 113 ° 113 ° 111 ° 111 ° 139 ° 139 ° R46 R50.5 R120 139 °± 4 ° 113 °± 4 ° 121 ° 143 ° 0 22 45 57.
7-8 CHAPTER 7 Specifications *2 * Maximum 10 mm rise during Z-axis stopper origin setting J.S.T. Mfg Co., Ltd. SM connector SMR-6V-B, pin BYM-001T-0.6 or SYM-001T-P0.6 (supplied) Use the YC12 crimping machine User tubing 1 ( φ 3) User tubing 2 ( φ 3) Do not attach any wire or tube to this cable.
7-9 CHAPTER 7 Specifications Working envelope X, Y-axis origin position X, Y-axis maximum movement position during X, Y-axis absolute reset stopper origin setting Use M3 bolt for installation *1 *2 R150 R70 R50.5 113 ° 113 ° 139 ° 139 ° 139 °± 4 ° 113 °± 4 ° 121 ° 143 ° 0 22 45 57.
7-10 CHAPTER 7 Specifications Connector for user wiring (No . 1 to 6 usable , sock et contact) R30 60 44 10 92 90 105 5 27 4- φ 7 Use M6 bolt for installation 39 73 130 41 109 71 44 No phase relation between flat spot and R-axis origin R12 100 ± 2 ( Z-axis origin position ) 15 10 User tool installation range φ 10 h7 0.
7-11 CHAPTER 7 Specifications 120 ° 140 ° R 109 119 1 40 ° 120 ° R18 0 X-axis origin is at 0 °± 5 ° with respect to front of robot base 133 ° ± 5 ° R75.
7-12 CHAPTER 7 Specifications Connector for user wiring (No . 1 to 6 usable , sock et contact) R 3 0 60 44 39 73 130 27 90 105 5 4- φ 7 Use M6 bolt for installation 10 92 41 109 111 44 463.5 No phase relation between flat spot and R-axis origin 203 163.
7-13 CHAPTER 7 Specifications 120 ° 140 ° 140 ° 120 ° 119 R220 R75.7 R109 133 °± 5 ° 74 11 15 50 25 8 0 M3 ground terminal User tubing 2 ( φ 3) User tubing 1 ( φ 3) X-axis origin is at 0 °±.
7-14 CHAPTER 7 Specifications 1-3 Robot inner wiring diagram XY ZM RM XM YM ZR RORG RORG ZBK ZBK RP RM ZP ZM YP YM RP RM ZP ZM YP YM XP XP ZBK ZBK FG FG XM XM YM YM ZM ZM RM RM RORG RORG YP YP ZP ZP R.
7-15 CHAPTER 7 Specifications 1-4 W iring table Robot cable wiring table W V R2 S1 Resolver S4 YM XM 0.14sq 0.14sq 0.14sq Twisted pair Twisted pair Twisted pair Twisted pair Twisted pair Twisted pair Twisted pair Twisted pair Twisted pair Twisted pair Twisted pair Twisted pair Twisted pair Twisted pair Twisted pair Twisted pair 4 U 0.
7-16 CHAPTER 7 Specifications Machine harness wiring table 1 2 3 5 No Color Wire No Connector Connector Connection 1 2 3 5 Yellow RP RP 6 7 6 7 W V 3 4 5 3 4 5 ZP ZP 6 7 6 7 R-axis Resolver S2 1 2 3 4 1 2 3 4 Signal RM RM 0.20mm 2 Y-axis motor U Z-axis motor U R-axis motor U W V YM 2 1 YM 0.
7-17 CHAPTER 7 Specifications Motor wiring table Resolver Motor S2 S4 S1 S3 R1 R2 SHIELD U V W PE No. 1 2 3 4 5 6 7 1 2 3 Connector XP, YP, ZP, RP XM, YM, ZM, RM Red Red Blue Yellow Black White White Green Black Black YK120X, YK150X Signal Color Connection Origin sensor wiring table 24V ORG GND Brown Black Blue 1 2 3 RORG No.
7-18 CHAPTER 7 Specifications Motor wiring table Resolver Motor S2 S4 S1 S3 R1 R2 SHIELD U V W PE No. 1 2 3 4 5 6 7 1 2 3 Connector XP, YP, ZP, RP XM, YM, ZM, RM Brown Red Blue Red White Black Black Black YK180X, YK220X Signal Color Connection Blue Black Brown Black Origin sensor wiring table 24V ORG GND Brown Black Blue 1 2 3 RORG No.
MEMO.
Aug. 2006 V er . 1.33 This manual is based on V er . 1.33 of Japanese manual. © Y AMAHA MOTOR CO., L TD. IM Company All rights reserved. No part of this publication may be reproduced in any form without the permission of Y AMAHA MO TOR CO., L TD. Information furnished by Y AMAHA in this manual is believed to be reliable.
デバイスYamaha YK180Xの購入後に(又は購入する前であっても)重要なポイントは、説明書をよく読むことです。その単純な理由はいくつかあります:
Yamaha YK180Xをまだ購入していないなら、この製品の基本情報を理解する良い機会です。まずは上にある説明書の最初のページをご覧ください。そこにはYamaha YK180Xの技術情報の概要が記載されているはずです。デバイスがあなたのニーズを満たすかどうかは、ここで確認しましょう。Yamaha YK180Xの取扱説明書の次のページをよく読むことにより、製品の全機能やその取り扱いに関する情報を知ることができます。Yamaha YK180Xで得られた情報は、きっとあなたの購入の決断を手助けしてくれることでしょう。
Yamaha YK180Xを既にお持ちだが、まだ読んでいない場合は、上記の理由によりそれを行うべきです。そうすることにより機能を適切に使用しているか、又はYamaha YK180Xの不適切な取り扱いによりその寿命を短くする危険を犯していないかどうかを知ることができます。
ですが、ユーザガイドが果たす重要な役割の一つは、Yamaha YK180Xに関する問題の解決を支援することです。そこにはほとんどの場合、トラブルシューティング、すなわちYamaha YK180Xデバイスで最もよく起こりうる故障・不良とそれらの対処法についてのアドバイスを見つけることができるはずです。たとえ問題を解決できなかった場合でも、説明書にはカスタマー・サービスセンター又は最寄りのサービスセンターへの問い合わせ先等、次の対処法についての指示があるはずです。